Name:
\qquad

Chemistry: Stoichiometry - Problem Sheet 2

Directions: Solve each of the following problems. Show your work, including proper units, to earn full credit.

1. \qquad $\mathrm{CaCl}_{2}+\ldots \mathrm{AgNO}_{3} \rightarrow \ldots \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+\ldots \ldots \mathrm{AgCl}$

How many grams of silver chloride are produced when 45 g of calcium chloride react with excess silver nitrate?
2. \qquad $\mathrm{CuO}+$ \qquad H \qquad $\mathrm{Cu}+$ \qquad $\mathrm{H}_{2} \mathrm{O}$

At STP, how many liters of hydrogen are needed to react with 88 g of copper (II) oxide?
3. \qquad $\mathrm{Na}+$ \qquad $\mathrm{H}_{2} \mathrm{O} \rightarrow$ \qquad $\mathrm{NaOH}+$ \qquad H_{2}

If 3 liters of hydrogen (at STP) are produced in the above reaction, what mass of sodium was used?
4. \qquad $\mathrm{CH}_{4}+$ \qquad $\mathrm{O}_{2} \rightarrow$ \qquad $\mathrm{CO}_{2}+$ \qquad $\mathrm{H}_{2} \mathrm{O}$

What volume of methane is needed to completely react with 500 liters of oxygen?
5. \qquad $\mathrm{CS}_{2}+$ \qquad O_{2} \qquad $\mathrm{CO}_{2}+$ \qquad SO_{2}

How many molecules of carbon disulfide will react with 4.21×10^{19} molecules of oxygen?
6. \qquad $\mathrm{C}_{2} \mathrm{H}_{6}$ \qquad $\mathrm{C}_{2} \mathrm{H}_{4}+$ \qquad H_{2}

If 5.76×10^{28} molecules of ethane are broken down, what volume of hydrogen gas is produces at STP?
7. \qquad $\mathrm{Fe}+$ $\mathrm{H}_{2} \mathrm{O}$ \rightarrow \qquad $\mathrm{Fe}_{3} \mathrm{O}_{4}+$ \qquad H_{2}

If $67.8 \mathrm{dm}^{3}$ of hydrogen are produced at STP, how many atoms of iron were used in the reaction?
8. \qquad $\mathrm{KClO}_{3} \rightarrow$ \qquad $\mathrm{KCl}+$ \qquad O_{2}

If 8.65×10^{25} molecules of potassium chloride are produced, what mass of oxygen is produced?
9. \qquad $\mathrm{NaI}+\ldots \mathrm{Cl}_{2} \rightarrow \quad \mathrm{NaCl}_{+}+\mathrm{I}_{2}$

How many molecules of iodine are liberated if 546 g of chlorine react with excess sodium iodide?
10. $\quad \ldots \mathrm{Cu}+\ldots \mathrm{AgNO}_{3} \rightarrow \ldots \mathrm{Cu}_{(}\left(\mathrm{NO}_{3}\right)_{2}+\ldots \ldots \mathrm{Ag}$

How many grams of silver will be produced if 86 g of copper are used?
11. \quad __ $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+\ldots \mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaSO}_{4}+\ldots \mathrm{NH}_{3}+\ldots \mathrm{H}_{2} \mathrm{O}$

At STP, how many dm^{3} of ammonia are produced by using 26.0 g of calcium hydroxide?
12. \qquad $\mathrm{NaCl}+$ $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow-$ $\mathrm{HCl}+$ \qquad $\mathrm{Na}_{2} \mathrm{SO}_{4}$

If 359 g of sodium chloride are consumed in the reaction, how many molecules of sodium sulfate are produced?
13. \qquad $\mathrm{AgCH}_{3} \mathrm{COO}+\ldots \mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow \quad \mathrm{Cg}_{3} \mathrm{PO}_{4}+$ \qquad $\mathrm{NaCH}_{3} \mathrm{COO}$

What mass of $\mathrm{AgCH}_{3} \mathrm{COO}$ will react with 4.77×10^{26} molecules of sodium phosphate?

14 \qquad $\mathrm{HgO} \rightarrow \quad-\mathrm{Hg}+$ \qquad O_{2}

What mass of mercury (II) oxide is required to produce 812 liters of oxygen (at STP)?
15.
$\ldots \mathrm{Ag}_{2} \mathrm{O} \rightarrow \ldots \mathrm{Ag}+\ldots \mathrm{O}_{2}$
How many molecules of silver oxide are needed to produce $445 \mathrm{dm}^{3}$ of oxygen (at STP)?
16. __ \square $\mathrm{HCl} \rightarrow \ldots \mathrm{AlCl}_{3}+$ \qquad H_{2}

How many liters of hydrogen (at STP) are produced by reacting 3.54×10^{24} atoms of aluminum with excess hydrochloric acid?

Answers:

1. 116 g AgCl
2. $24.8 \mathrm{~L} \mathrm{H}_{2}$
3. 1.40×10^{19} molecules CS_{2}
4. $2.14 \times 10^{6} \mathrm{~L} \mathrm{H}_{2}$
5. 4.63×10^{24} molecules I_{2}
6. 292 g Ag
7. $15.7 \mathrm{dm}^{3} \mathrm{NH}_{3}$
8. 1.85×10^{24} molecules
9. $3.97 \times 10^{5} \mathrm{~g} \mathrm{AgCH}_{3} \mathrm{COO}$
10. $1.57 \times 10^{4} \mathrm{~g} \mathrm{HgO}$
11. 2.39×10^{25} molecules $\mathrm{Ag}_{2} \mathrm{O}$
12. $198 \mathrm{~L} \mathrm{H}_{2}$
