Careers in Chemistry: Farming
How much fertilizer will you need?
Conversion Factor: 1 acre corn $=6 \mathrm{~kg}$ phosphorous
$x \mathrm{~g} \mathrm{P}=340$ acres $\times \frac{(6 \mathrm{~kg} \mathrm{P})}{(1 \mathrm{acre})} \times \frac{(1000 \mathrm{~g} \mathrm{P})}{(1 \mathrm{~kg} \mathrm{P})}=2.04 \times 10^{6} \mathrm{~g} \mathrm{P}$
If a bag of fertilizer has the formula $\mathrm{Ca}_{3} \mathrm{P}_{2} \mathrm{H}_{14} \mathrm{~S}_{2} \mathrm{O}_{21}$,
The molar mass of it is $596 \mathrm{~g} / \mathrm{mol}$.

$3 \mathrm{Ca} @ 40 \mathrm{~g} / \mathrm{mol}$	$=120 \mathrm{~g}$		
$2 \mathrm{P} @ 31 \mathrm{~g} / \mathrm{mol}$	$=62 \mathrm{~g}$		
$14 \mathrm{H} @ 1 \mathrm{~g} / \mathrm{mol}$	$=14 \mathrm{~g}$		
$2 \mathrm{~S} @ 32 \mathrm{~g} / \mathrm{mol}$	$=64 \mathrm{~g}$	$\% \mathrm{P}=\frac{\text { Part }}{}$	
$21 \mathrm{O} @ 16 \mathrm{~g} / \mathrm{mol}$	$=335 \mathrm{~g}$		
$\mathrm{Ca}_{3} \mathrm{P}_{2} \mathrm{H}_{14} \mathrm{~S}_{2} \mathrm{O}_{21}$	$=596 \mathrm{~g}$	10.4% Phosphorous	

In a bag of fertilizer you have 10.4% (by mass) phosphorous.
A bag of fertilizer weighs $10,000 \mathrm{~g}$ (about 22 pounds).
10.4% of $10,000 \mathrm{~g}=1040 \mathrm{~g}$ phosphorous / bag of fertilizer
$\frac{2.04 \times 10^{6} \mathrm{~g} \mathrm{P}}{1040 \mathrm{~g} / \mathrm{bag}}=1962$ bags of fertilizer
Total Cost (1962 bags of fertilizer) $(\$ 54.73 /$ bag $)=\$ 107,380$

