Stoichiometry

http://www.unit5.org/chemistry/Stoichiometry.htm

Learning Objectives/Targets	Worksheet / Lab
STOICHIOMETRY	
 10.1 INTERPRETING A CHEMICAL EQUATION To relate the coefficients in a balanced chemical equation to: (a) moles of reactants and products (b) liters of gaseous reactants and products 	
 10.2 MOLE-MOLE RELATIONSHIPS To relate the number of moles of two substances in a balanced chemical equation. 	
 10.3 TYPES OF STOICHIOMETRY PROBLEMS To classify the three basic types of stoichiometry problems; mass-mass, mass-volume, and volume-volume To state the procedure for solving a stoichiometry problem, given the balanced equation. 	ne.
10.4 MASS-MASS PROBLEMSTo perform mass-mass stoichiometry calculations.	
10.5 MASS-VOLUME PROBLEMSTo perform mass-volume stoichiometry calculations.	
10.6 VOLUME-VOLUME PROBLEMSTo perform volume-volume stoichiometry calculations.	
 10.7 THE LIMITING REACTANT CONCEPT To explain the concept of a limiting reactant. To identify the limiting reactant in a chemical reaction, given the number of moles of each reactant. 	
 10.8 LIMITING REACTANT PROBLEMS To perform mass-mass stoichiometry calculations involving a limiting reactant. To perform volume-volume stoichiometry calculations involving a gaseous limiting reactant. 	
 10.9 PERCENT YIELD To calculate the percent yield for a reaction, given the actual yield and theoretical yield. 	
BACKGROUND INFORMATION 9.1 Avogadro's Number • To state the value of Avogadro's number: 6.02 x 10 ²³ . • To state the mass of Avogadro's number of atoms for any element by referring to the periodic table.	
9.2 Mole Calculations ITo relate the moles of a substance to the number of particles.	
9.3 Molar MassTo calculate the molar mass of a substance, given its chemical formula.	
9.4 Mole Calculations IITo relate the mass of a substance to the number of particles.	
 9.5 Molar Volume To state the value for the molar volume of any gas at STP: 22.4 L/mol. To relate the density of a gas at STP to its molar mass and volume. 	
 9.6 Mole Calculations III To relate the volume of a gas at STP to its mass and number of particles. 	

9.7 Percent Composition	
• To calculate the percent composition of a compound, given its chemical formula.	
9.8 Empirical Formula	
• To calculate the empirical formula of a compound, given experimental data for its synthesis.	
• To calculate the empirical formula of a compound, given its percent composition.	
9 9 Molecular Formula	

9.9 Molecular Formula

• To calculate the molecular formula of a compound, given its empirical formula and molar mass.

Vocabulary

actual yield limiting reactant stoichiometry excess reactant percent yield theoretical yield

Labs/Activities

(1) S'mores Activity pdf (3) Baking Soda Limiting Reagent pdf

(2) <u>Nuts and Bolts Activity pdf</u> (4) <u>Reactions of Copper pdf</u>

Worksheets

(5) <u>Vocabulary - Stoichiometry pdf</u> (14) Percent Yield pdf (6) <u>Island Diagram</u> (Reference sheet) (15) Energy and Stoichiometry pdf (7) Stoichiometry - Problem Sheet 1 pdf (16) Bags of Fertilizer pdf (key) pdf (8) Stoichiometry - Problem Sheet 2 pdf (17) Dentistry & Fluoride pdf (key) pdf (18) Stoichiometry Practice Problems pdf (9) Generic stoichiometry pdf (10) Generic pdf (19) Difficult Stoichiometry Problems pdf (20) Math of the Chemical Equations - answers (11) Easy Stoichiometry pdf pdf (12) Limiting Reactants pdf (21)Topics List pdf (13) Visualizing Limiting Reactants pdf **Textbook Questions pdf** (22)

LECTURE OUTLINE: Unit 9 Notes - Stoichiometry pdf (20 pages) (students) pdf

Calendar

Day 1 – Stoichiometry (5), (6)

Day 2 – Mole Island Calculations (7)

Day 3 – Limiting Reactants Stoichiometry (8) WEBSITE for Chemistry Textbook

Day 4 – Work Day: Stoichiometry

Day 5 - Limiting Reactants (12)

Day 6 – Percent Yield and Energy (14), (15)

Day 7 – QUIZ: Ideal Stoichiometry

Day 8 - LAB: Stoichiometry (3)

Day 9 – Work Day (10), (16), (17), (18), (19)

Day 10 – S'mores Lab (1), (18)

Day 11 - QUIZ: Stoichiometry 2

Day 12 – LAB: Reactions of Copper (4) Day 13 – LAB: Reactions of Copper

Day 14 - LAB: Reactions of Copper