$$
\underset{2.5 \mathrm{~g}}{2 \mathrm{KClO}_{3}(\mathrm{~s})} \rightarrow 2 \mathrm{KCl}(\mathrm{~s})+\underset{\mathrm{xg}}{3 \mathrm{O}_{2}(\mathrm{~g})}
$$

1. How many grams of O_{2} is produced if 2.50 g of KClO_{3} is completely decomposed by heating?
$\left.\times \mathrm{g} \mathrm{O}_{2}=2.5 \mathrm{~g} \mathrm{KClO}_{3} \times \frac{\left(1 \mathrm{~mol}_{\mathrm{KCl}}^{3}\right.}{}\right)^{2} \times \frac{\left(3 \mathrm{molO}_{2}\right)}{\left(122.5 \mathrm{~g} \mathrm{KClO}_{3}\right)} \times \frac{(32 \mathrm{~g} \mathrm{O}}{2}$ 2 $)=0.98 \mathrm{~g} \mathrm{O}_{2}$
2. How many grams of KCl is produced if 2.50 g of KClO_{3} is decomposed?

$$
\underset{2.5 \mathrm{~g}}{2 \mathrm{KClO}_{3}(\mathrm{~s})} \rightarrow \underset{\mathrm{xg}}{2 \mathrm{KCl}(\mathrm{~s})}+3 \mathrm{O}_{2}(\mathrm{~g})
$$

$\times \mathrm{g} \mathrm{KCl}=2.5 \mathrm{~g} \mathrm{KClO}_{3} \times \frac{\left(1 \mathrm{~mol} \mathrm{KCla}_{3}\right)}{\left(122.5 \mathrm{~g} \mathrm{KCl}_{3}\right)} \times \frac{\left(2 \mathrm{~mol} \mathrm{KClO}_{3}\right)}{\left(2 \mathrm{~mol} \mathrm{KClO}_{3}\right)} \times \frac{(74.5 \mathrm{~g} \mathrm{KCl})}{(1 \mathrm{~mol} \mathrm{KCl})}=1.52 \mathrm{~g} \mathrm{KCl}$
3. How many moles of KClO_{3} is used to produce 10 moles of O_{2} ?

$$
\underset{x \mathrm{~mol}}{2 \mathrm{KClO}_{3}(\mathrm{~s})} \rightarrow 2 \mathrm{KCl}(\mathrm{~s})+\underset{10 \mathrm{~mol}}{3 \mathrm{O}_{2}(\mathrm{~g})}
$$

$x \mathrm{~mol} \mathrm{KClO}_{3}=10 \mathrm{~mol}_{2} \times \frac{\left(2 \mathrm{~mol} \mathrm{KClO}_{3}\right)}{\left(3 \mathrm{molO}_{2}\right)}=6.7 \mathrm{~mol} \mathrm{KClO}_{3}$
4. How many moles of KCl is produced if 15 g of KClO_{3} is used?

$$
\underset{15 \mathrm{~g}}{2 \mathrm{KClO}_{3}(\mathrm{~s})} \rightarrow \underset{\mathrm{x} \mathrm{~mol}}{2 \mathrm{KCl}(\mathrm{~s})}+3 \mathrm{O}_{2}(\mathrm{~g})
$$

$x \mathrm{ml} \mathrm{KCl}=15 \mathrm{~g} \mathrm{KClO}_{3} \times \frac{\left(1{\left.\mathrm{~mol} \mathrm{KClQ}_{3}\right)}_{\left(122.5 \mathrm{gKClO}_{3}\right)} \times \frac{(2 \mathrm{~mol} \mathrm{KCl})}{\left(2 \mathrm{~mol} \mathrm{KClO}_{3}\right)}=0.12 \mathrm{~mol} \mathrm{KCl}\right.}{}$
5. How many liters of O_{2} is produced if 5 moles of KClO_{3} is used?

$$
\underset{5 \mathrm{~mol}}{2 \mathrm{KClO}_{3}(\mathrm{~s})} \rightarrow 2 \mathrm{KCl}(\mathrm{~s})+\underset{x \mathrm{~L}}{3 \mathrm{O}_{2}(\mathrm{~g})}
$$

$x \mathrm{LO}_{2}=5{\mathrm{~mol} \mathrm{KClO}_{3}} \times \frac{\left(3 \mathrm{~mol}_{2}\right)}{\left(122.5 \mathrm{gKClO}_{3}\right)} \times \frac{\left(22.4 \mathrm{~L} \mathrm{O}_{2}\right)}{\left(1 \mathrm{molO}_{2}\right)}=168 \mathrm{~L} \mathrm{O}_{2}$
6. How many liters of O 2 is produced if 10 g of KClO 3 s used?

$$
\underset{10 \mathrm{~g}}{2 \mathrm{KClO}_{3}(\mathrm{~s})} \rightarrow 2 \mathrm{KCl}(\mathrm{~s})+\underset{\mathrm{xL}}{3 \mathrm{O}_{2}(\mathrm{~g})}
$$

$\times \mathrm{LO}_{2}=10 \mathrm{~g} \mathrm{KClO}_{3} \times \frac{\left(1 \mathrm{molkCl}_{3}\right)}{\left(122.5 \mathrm{gKClO}_{3}\right)} \times \frac{\left(3 \mathrm{~mol}_{2}\right)}{\left(2 \mathrm{KOlOH}_{3}\right)} \times \frac{\left(22.4 \mathrm{~L} \mathrm{O}_{2}\right)}{\left(1 \mathrm{molO}_{2}\right)}=2.74 \mathrm{~L} \mathrm{O}_{2}$

