Name:	 	
Hour:	 Date:	

Chemistry: Stoichiometry and Baking Soda (NaHCO₃)

- **Purposes:** 1. Calculate theoretical mass of NaCl based on a known mass of NaHCO₃.
 - 2. Experimentally determine the actual mass of NaCl produced.
 - 3. Calculate the percent yield for your experiment.

Reaction Equa	ation:	NaHCO ₃ (s)	+	HCI(aq)	÷	NaCl(s)	+	CO ₂ (g)	+	H ₂ O(I)
<u>Materials:</u>	safety glasses evaporating dis watch glass	h		baking so ring stan wire gau:	oda d wi [:] ze	(NaHCO₃ th ring)	cc bu to	once inse ngs	entrated HCI and dropper en burner and matches

Procedure:

- 1. Find the mass of the evaporating dish and watch glass. Record this mass in the Data Table.
- 2. Add $\frac{1}{3}$ of a teaspoon of baking soda to the evaporating dish, and record the total mass in the Data Table.
- 3. Cover the evaporating dish with the watch glass so that only the spout of the evaporating dish is exposed.
- 4. Use the dropper to drip HCI down the spout and into the dish. Add HCI until the fizzing ceases.
- 5. Leaving the watch glass in place, boil off the liquid until only table salt (NaCl) remains in the dish.
- 6. Let the dish cool for five minutes, then weigh it again and record the mass in the Data Table.
- 7. Clean up by rinsing your equipment with water and wiping dry with a paper towel.

Quantity Measured	Mass
evaporating dish, watch glass	
evaporating dish, watch glass, NaHCO $_3$	
evaporating dish, watch glass, NaCl	

Calculations:

- 1. Find the theoretical mass of NaCl that would be produced if your experiment were perfect.
- 2. Find the actual mass of NaCl that you obtained.
- 3. Find the percent yield for your experiment. If your percent yield is greater than 100%, provide at least one possible source of error that might have caused you to get more than 100% yield.