\qquad

Mass Relationships and Feeding the Army

1. Why was the magnesium-water reaction of the FRH chosen over the other methods?
2. Why is there a difference between the amount of water that is added and the amount of water that the reaction requires?

8-1 How Much Can A Reaction Produce?

Objectives:

- Distinguish between composition stoichiometry and reaction stoichiometry.
- Apply a three-step method to solve stoichiometry problems.
- Use mole ratios and molar masses to create conversion factors for solving stoichiometry problems.

STOICHIOMETRY

Organize what you already know.

- Check the units given
- Determine the mole ratio
- Use the mole ratio to calculate moles
- Use molar mass to calculate grams

Sample Problem 8 - A

Methyl salicylate, also known as "oil of wintergreen," is most often made in a synthesis reaction between methanol and salicylic acid. How many grams of salicylic acid are needed to produce 325 g of methyl salicylate, provided there is plenty of methanol available?

OTHER STOICHIOMETRIC CALCULATIONS

Problems with amounts in moles

Sample Problem 8 - B

The human body needs at lease $1.03 \times 10^{-2} \mathrm{~mol} \mathrm{O}_{2}$ every minute. If all of this oxygen is used for the cellular respiration reaction that breaks down glucose, how many grams of glucose does the human body consume each minute?

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g})---->6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Sample Problem 8-C

In the space shuttle, the CO_{2} that the crew exhales is removed from the air by a reaction within canisters of lithium hydroxide. On average, each astronaut exhales about 20.0 mol of CO_{2} daily. What volume of water will be produced when this amount of CO_{2} reacts with an excess of LiOH ? (Hint: the density of water is about $1.00 \mathrm{~g} / \mathrm{mL}$.)

$$
\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{LiOH}(\mathrm{~s})----->\mathrm{Li}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}
$$

Calculating the number of atoms or formula units

8-2 How Much Does A Reaction Really Produce?

Objectives:

- Distinguish between a limiting reactant and an excess reactant.
- Identify the limiting reactant in a problem, and calculate the theoretical yield.
- Distinguish between theoretical yield and actual yield.
- Given the actual yield and the quantity of the limiting reactant, calculate the percent yield.
- Use percent yield to calculate the actual yield.

LEFTOVER REACTANTS

Reactants combine in specific whole-number ratios

Excess reactant - reactant that will not be used ut in a reaction that goes to completion
Limiting reactant - reactant that is consumed first in a reaction that goes to completion.

Determining the limiting reactant

Sample Problem 8 - D

Carbon monoxide can be combined with hydrogen to produce methanol, $\mathrm{CH}_{3} \mathrm{OH}$. Methanol is used as an industrial solvent, as a reactant in synthesis, and as a clean-burning fuel for some racing cars. If you had 152.5 kg CO and $24.50 \mathrm{~kg} \mathrm{H}_{2}$, how many kilograms of $\mathrm{CH}_{3} \mathrm{OH}$ could be produced?

INCOMPLETE REACTIONS

Measuring what a chemical reaction actually produces

Theoretical yield - calculated maximum amount of product possible from a given amount of reactant.
Actual yield - measured amount of product actually produced from a given amount of reactant.

Percent yield is a way to describe a reaction effiency

Percent yield - ratio of actual yield to theoretical yield, multiplied by 100
percent yield $=\underset{\text { theoretical yield }}{\text { actual yield }} \times 100$

Practice Problem 8-E

One step in making para-aminobenzoic acid, PABA, an ingredient in some suntan lotions, involves replacing one of the hydrogen atoms in a toluene molecule with an $-\mathrm{NO}_{2}$ group, directly opposite the $-\mathrm{CH}_{3}$ group. Calculate the percent yield if 550 g of toluene added to an excess of nitric acid provides 305 g of the nitrotoluene product.

Percent yield figures can be used to predict actual yield.

Practice Problem 8-F

A more efficient way to prepare the molecule that was used to produce PABA for suntan lotions involves a slightly different starting material, known as isopropylbenzene. This reaction usually has a 91.2% yield. How many grams of the product, para-nitro-isopropylbenzene, can you expect if 775 g of isopropylbenzene react with an excess of nitric acid?

8-3 How Can Stoichiometry Be Used?

Objectives:

- Relate volume calculations in stoichiometry to the inflation of automobile safety air bags.
- Use the concept of limiting reactants to explain why changing fuel-air ratios affects engine performance.
- Use percent yield to compare the effiency of pollution-control mechanisms in cars.

Air-bag design depends on stoichiometric precision.

$$
\begin{gathered}
2 \mathrm{NaN}_{3}(\mathrm{~s})---->2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g}) \\
6 \mathrm{Na}(\mathrm{~s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})---->3 \mathrm{Na}_{2} \mathrm{O}(\mathrm{~s})+2 \mathrm{Fe}
\end{gathered}
$$

Practice Problem 8-G

Assume that 65.1 L of N_{2} gas are needed to inflate an air bag to the proper size. How many grams of NaN_{3} must be included in the gas generant to generate this amount of N_{2} ? (Hint: the density of N_{2} gas at this temperature is about $\left.0.916 \mathrm{~g} / \mathrm{L}\right)$.

Practice: 1. How much $\mathrm{Fe}_{2} \mathrm{O}_{3}$ must be added to the gas generant for this amount of NaN_{3} ?

Engine efficiency depends on the reactant proportions

$$
\begin{aligned}
& \text { gasoline }+ \text { air }---->\text { carbon dioxide }+ \text { water }+ \text { energy } \\
& 2 \mathrm{C}_{8} \mathrm{H}_{18(\mathrm{~g})}+25 \mathrm{O}_{2(\mathrm{~g})}---->16 \mathrm{CO}_{2(\mathrm{~g})}+18 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+10,900 \mathrm{~kJ}
\end{aligned}
$$

Sample Problem 8-H

How many liters of air must react with 1.000 L of isooctane in order for combustion to occur completely? At 20 degrees Celcius, the density of isooctane is $0.6916 \mathrm{~g} / \mathrm{mL}$, and the density of oxygen is $1.331 \mathrm{~g} / \mathrm{L}$. (Hint: remember to use the percentage of oxygen in air.)

Car designers use stoichiometry to control pollution

