Video z03	
(2:35)	

<u>Fluids</u>

Name: _____

Video z06 (5:14) <u>fluid</u>: a material ^w/the ability to flow and change shape

(mass) density, ρ =

Equation:

	Gases	Liquids
Particle spacing		
Fixed shape?		
Fixed volume?		
Compressible?		

For a particular fluid:

For a particular object:

-- Unless we say otherwise, when we say "density," we mean "mass density."

-- In SI, the unit for density is...

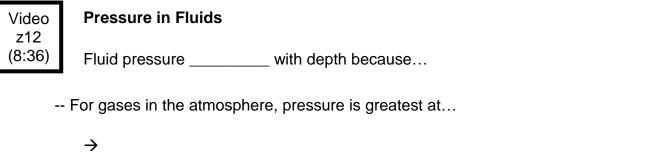
-- In proper SI units, the density of water is...

Liquids and solids have "fixed" densities; gases don't.

A substance's <u>specific gravity</u> (γ) is a unitless number that compares Equation: the density of that substance relative to the density of...

γfresh water	γ iron or steel	γ aluminum
γsalt water	γmercury	γethanol

EX. Given the specific gravities of steel and ethanol above, determine the densities of these materials, using the proper SI units.



pressure:

Equation:

SI unit for pressure:

At sea level, air pressure is about...

 \rightarrow

-- For liquids, the pressure-depth relationship is linear because liquids are...

 \rightarrow

EX. Determine the pressure on the bottom surface of each tank, due to the water.

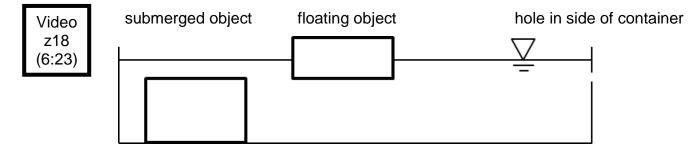
1 m x 1 m x 1 m 2 m x 1 m x 1 m

Gauge pressure equation:

Video z15 (6:26)

**

P does NOT depend on total volume of liquid, only type of liquid, gravity, and depth.


 ∇

The P in the equation $P = \rho g h$ (i.e., the <u>gauge pressure</u>) does NOT account for the pressure AT the liquid's surface (from gases above it). To find the <u>total pressure</u> (P_{tot}) at a given depth, simply add the surface pressure (P₀) to the gauge pressure at that depth.

Total pressure equation:

EX. Given that the specific gravity of gasoline is 0.68, find both the gauge AND total pressures1.4 m below the surface of a tank of gasoline that has air space at the top. Assume the air pressure to be 101.3 kPa.

EX. Repeat the calcs for a depth of 2.8 m in gasoline.

In a fluid, the pressure at a given depth is exerted...

 \rightarrow And pressure always acts ______ to any surface.

Fluids flow away from points of _____ P toward points of _____ P (even though there might be quirky things happening "/P in btwn these pts; more on this later).

I	Video
	z24
	(9:13)

bouyant force, FB:

- -- F_B is the result of the difference in...
- -- Pressures on the sides of the object...
- -- The F_B on a <u>completely</u> submerged object is NOT affected by...
- -- F_B IS affected by...

Because of buoyancy, the net force on an immersed object is always the object's weight.

This net force we call the apparer	<u>nt weight</u> (F	\overline{T}_{app}). Equation:	
Objects that are floating:	weight	buoyant force	
Objects that aren't:	weight	buoyant force	

- EX. A 43 kg rowboat is loaded with 185 kg worth of fishers and fishing equipment. What is the buoyant force on the boat when it is out on the lake?
- EX. A 28.4 g lead sinker used by a fisherman has an apparent weight of 0.254 N in water. Find the buoyant force on the sinker.

Video z30 (7:40)	Archimedes' Principle	Any object in a fluid experie equal to the weight of the fl	•	2
-	r a floating object: → the displaced fluid's weight → the displaced fluid's volume	the object's weight the object's volume	floating object	
Handy equation for floating objects:				
-	r a sunken object: → the displaced fluid's weight → the displaced fluid's volume	the object's weight the object's volume	sunken object	
	**			

Equation for buoyant force:

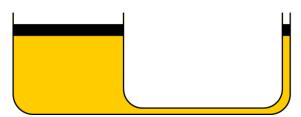
From density, we see that... $m_{df} = \rho_f V_{disp}$, and so...

** It is the ______ of the immersed object, NOT its _____, that affects the buoyant force.

A life preserver greatly increases "your" _____ but barely increases "your" _____.

Video z36 (3:59) A floating tree trunk has specific gravity 0.41 and a volume of 0.79 m³. Find the log's apparent weight, the buoyant force on it, and the volume of water it displaces.

Video z39 (3:41) A solid copper cube – 0.112 m on a side – is under water. Its apparent weight is 109.16 N. Find copper's specific gravity.



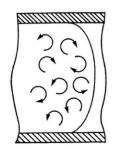
Pascal's PrincipleExternal pressure applied to a confined fluid is transmitted
equally to every point in the fluid.

e.g.,

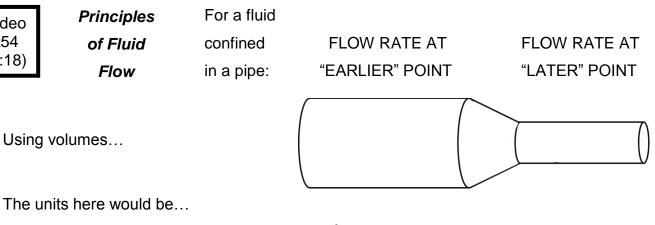
A <u>hydraulic lift</u> has two pistons, one that is much larger in surface area than the other.

Equation:

The effect of a hydraulic lift is that we get to input a small force and transform it into a larger one, but the price we pay is that...


** In physics, this is analogous to the behavior exhibited by...

Video z45 (3:06)


A hydraulic lift's pistons have areas of 0.0254 m^2 and 1.33 $m^2\!.$ What minimum force is needed for us to elevate a 1420 kg car with the aid of the hydraulic lift?

For the problem above, find EX. the pressure on each piston.

Video z48	Fluids in Motion			
(2:10)	flow rate:			
	units cou	ld be either	OR	
Video z51 (3:40)		fluid "particle" p	itself along a smooth	
	-			
<u>turbu</u>	lent flow:			
 <u>eddies</u> (or <u>vortices</u>) are clear indicators of turbulent flow 				
Video z54 (6:18)	Principles of Fluid Flow	For a fluid confined in a pipe:	FLOW RATE AT "EARLIER" POINT	
		/		

model profile of laminar flow in a pipe

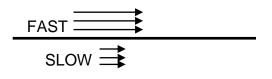
An equivalent expression, then, which deals with the cross-sectional areas of two different points along the pipe – and the speeds of the fluids through those cross-sections – is called the <u>continuity equation</u>:

What are the units here?

--

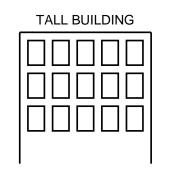
Conceptual examples:

In a water-treatment plant, water flows at 0.86 m/s through a 0.64 m diameter pipe. Find the water's speed when this flow narrows into a pipe of diameter 0.28 m.

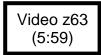


EX.

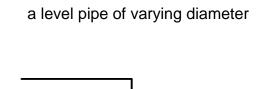
Bernoulli's Principle

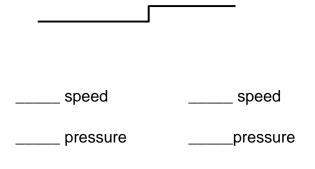

For a fluid traveling // to a surface:

- -- FAST-moving fluids exert _____ pressure.
- -- SLOW-moving fluids exert _____ pressure.

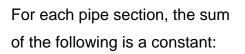


EX. airplane wing / helicopter propeller

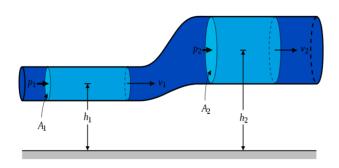



Video z66

(6:26)


Bernoulli's principle can be rationalized in two ways:

1. Newton's 2nd law



The conservation of energy idea brings us nicely to the Bernoulli Equation (which IS the conservation of energy, but with units of pascals instead of _____). 2. conservation of "energy"

- -- "KE" from fluid's motion
- -- PE_{g} due to elevation of fluid
- -- PE due to fluid's pressure

EX. A level pipe carries water under pressure. At one point, the water's speed is 0.48 m/s and its pressure is 24,500 Pa. In an adjacent section, the pipe is constricted; the water's speed increases to 3.27 m/s. Find the pressure in the adjacent section.

Video z69 (5:38)

A pipe carries water under pressure in a factory. At one point, the speed is 2.46 m/s and the pressure is 31,500 Pa. In an adjacent section, the pipe is 1.75 m lower; there, the pressure is 26,700 Pa. Find the speed in the adjacent section.