Work, Energy, and Power

...done on an object when a force moves object through a distance Work

Unit for work is N-m, or J. F and d must be //.

EX. A 63.4 g facial tissue box is lifted at constant speed from the ground to height 1.08 m. Find work the lifter does on box.

Student carries 63.4 g tissue box 3.2 m --- at constant height EX. Of 1.08 m above floor. How much work does gravity do on box?

> 25 kg mass is pulled 3.4 m across horiz. surface by 170 N horiz. force. Coefficient of friction is 0.33. Find work done by...

...applied force

...friction

...gravity.

Now find <u>net work</u> done on mass.

Video 506

(4:55)

Video	
509	
(6:16)	

17.5 kg mass is pulled 5.43 m → by a 185 N force applied at 21.0° above horizontal. If coefficient of friction is 0.420, find work done by every force acting on mass.

Law of Conservation of Energy

Energy remains constant, but may change form. We use this in solving problems if there is...

- A. little or no friction (including air resistance)
- B. no collision in which significant heat is released

Procedure:

- 1. Take two snapshots of system.
- 2. Calculate various energies (KE, $\mathsf{PE}_g,\,\mathsf{PE}_{\mathsf{elas}})$ for each snapshot.
- 3. The sum of these (i.e., the total mechanical energy, ME) for one snapshot equals the sum of these for the other snapshot.
- EX. 3.0 kg mass slides ---- off a 1.8 m-high shelf

at 6.0 m/s \longrightarrow . Find mass's speed as it hits ground.

	Α	В
KE		
PEg		
PEelas		
ME		

EX. 3.0 kg mass slides \longrightarrow off a 1.8 m-high shelf

at 6.0 m/s \longrightarrow . Find mass's speed as it hits ground.

	Α	В
KE		
PEg		
PEelas		
ME		

Video 518 (6:35)

A 7.4 kg cat sits at rest on window ledge 1.1 m above the floor on 13th story of apt. bldg. Floor level is 41.0 m above street. Find speed of cat landing on floor.

	Α	В
KE		
PEg		
PEelas		
ME		

EX. A 7.4 kg cat sits at rest on window ledge 1.1 m above the floor on 13th story of apt. bldg. Floor level is 41.0 m above street. Find speed of cat landing on floor.

	Α	В
KE		
PEg		
PEelas		
ME		

Video 521 (7:29)

A 2.0 m pendulum hangs from ceiling that is 3.0 m above floor. If 8.0 kg bob is released from rest 1.5 m above floor, find its speed at bottom of its path.

	Α	В
KE		
PEg		
PEelas		
ME		

EX. A 0.38 kg object rests on spring ^w/spring constant 6.0 x 10³ N/m. Orig. spring length is 82 cm, but it has been compressed to 52 cm. When spring is released, object goes how high?

	Α	В
KE		
PEg		
PEelas		
ME		

Video 524 (8:28) Horiz. spring is attached to wall. An 8.5 kg mass is slid across a frictionless, horiz.

surface at 2.8 m/s. When mass hits spring, spring compresses 45 cm. If surface is 1.4 m

8) abov	e ground, find spring c	fric	ctionless
	Α	В	
KE			
PE_{g}			
PEelas			
ME]

EX. Arrow of unknown mass is launched at an unknown angle ^w/initial speed 45 m/s. At top of its path, its speed is 35 m/s. How high does arrow fly?

At what angle was arrow launched?

The Work-KineticWhen friction and other heat losses are NOT negligible, theEnergy Theoremconservation of energy procedure is invalid. Thus, we turn
to the work-kinetic energy theorem (which could, incidentally,
be used in any of the previous examples).

EX. From rest, a 72 kg object is pulled on a level surface by a horiz. 238 N force. If coeff. of kinetic friction is 0.28, how far will object have traveled by the time its speed reaches 5.0 m/s? EX. A 12 kg object slides → on ice ^w/initial speed 2.2 m/s. If coeff. of kinetic friction is 0.030, how far will object slide?

A 12.5 kg mass begins from rest at top of a frictionless, 4.0 m-long, 32° incline. Find speed at bottom.

Now find v_f when $\mu_k = 0.27$.

Video 539 (7:40)

Power \rightarrow

Unit for power is the...

EX. A flooded basement contains 1.2 x 10⁸ kg of water that must be pumped upwards
2.5 m. In what time would a 373 kW pump empty the basement?

EX. An 85 kg mass must be raised to height 4.5 m. Person A does so in 1 minute, 24 seconds; Person B does so in 2 minutes, 48 seconds.Find work AND power done by A AND by B.

A 5.0 x 10^2 kg rocket accelerates upward from rest to 540 m/s in 2 minutes, 46 seconds. If air resistance is 1.5×10^3 N, find avg. power of rocket engine.

"Effort" deals "/force you apply; "resistance" refers to force from load.

For ideal machines...

i.e.,

The ideal mechanical advantage (IMA) is...

For real machines...

and actual mechanical advantage (AMA) < IMA

(Note that, for ideal machines, IMA = AMA.)

NO machine...

<u>Efficiency</u> (Eff) tells how closely a real machine comes to being an ideal machine. It is a %.

Video 551 (2:50)

Ramp of length 3.2 m allows 54 kg mass to be pushed up 73 cm above floor. If force req'd to push mass up ramp is 230 N, find IMA, AMA, and efficiency of ramp.

