Optics

Name _____

EX. Find the wavelength of a B-104 radio wave (FM 104.1, with f = 104.1 MHz).

EX. Find the wavelength of a WBBM radio wave (AM 780, with f = 780 kHz).

Mirror Ray Diagrams

Video 1030 (6:48)

Line up top of object		The light ray reflecting back to the left will be along a line connecting pt. of intersection ^w /mirror
// to P.A.	Draw ray	
^w /F.	from top of object to mirror.	
[₩] /C.		

real image: rays actually intersect; can project it on a screen

virtual image: rays appear to intersect, but don't; cannot project it on a screen

Mirror Equation and Magnification

EX. Concave mirror has radius of mag. 55 cm. Object is 84 cm from mirror, is 24 cm tall. Find focal length, image distance, and magnification. Describe image.

EX. Concave mirror has focal length of mag. 36.0 cm. Object has height 18.0 cm, is 8.00 cm from mirror. Describe image.

EX. Concave mirror has focal length of mag. 30 cm. Object of height 10 cm is at mirror's focal point. Describe image.

Video 1036 (6:16) EX. Convex mirror has radius of mag. 64.0 cm. Object has height 24.0 cm, is 30.0 cm from mirror. Describe image.

Video 1039 (4:25)	Parabolic Mirrors	Drawback of spherical mirrors:
resulting blue	rring =	remedied using parabolic mirrors
 If a min	rror is spherical	
Video 1042 (7:11)	Color White light cor	ntains all visible λs.
Objects that "a	re" white colored black	$\left\{ \begin{array}{c} \\ \\ \end{array} \right\} \text{ visible } \lambda \text{s, and absorb } \left\{ \begin{array}{c} \\ \end{array} \right\}$
Primary colors	of light (NOT pigments):	
Light is <u>ad</u>	ditive.	

Two colors of light are <u>complimentary</u> if, when added, they produce white light.

Pigments are subtractive.

blue pigment (incident W light)

yellow pigment

blue pigment + yellow pigment

ROYGBV

Video 1048 (5:27)

Polarization of Light

ROYGBV

Normally, light is <u>unpolarized;</u>

i.e.,

polarized light: orderly vibrations

EX. Light in water is incident on cubic zirconia at 31.5°. Angle of refraction is 18.5°. Water's index of refraction is 1.333. Find speed of light in cubic zirconia.

Examples of Refraction

Lens Ray Diagrams

First... 1. Draw a centerline vertically through lens.

2. Draw two F's, measured from centerline.

Line up top of object	Draw ray from top of object to lens' centerline.	the light ray refracts and continues toward the right along a line from its pt. of intersection ^w /centerline
// to P.A.	Keeping in	
^w /F	of lens	
w/center of lens	01 10113	

<u>real image</u>: rays actually intersect; can project it on a screen <u>virtual image</u>: rays appear to intersect, but don't; cannot project it on a screen

Lens Variables

Thin Lens Equation and Magnification

EX. Diverging lens has focal length of mag. 10.0 cm. A wiener-dog puppy15.0 cm tall is 22.0 cm from lens. Describe image.

EX. Converging lens has focal length of mag. 7.7 cm. A 0.38 cm-tall real image of a thimble is formed 9.1 cm from lens. How far from lens is thimble? How tall is thimble?

Equation for the Critical Angle:

EX. Find critical angle for light traveling from flint glass (n = 1.900) into crown glass (n = 1.522).

total internal reflection

- -- light is incident from a MORE optically dense medium to a LESS optically dense medium at $\theta_i \ge \theta_c$
- -- no light escapes from the MORE optically dense medium

e.g., total internal reflection in fiber optic cables

Dispersion \rightarrow when polychromatic light is separated into its component λ s

--

--

-- By convention, the accepted index of refraction for a material is for λ = 589 nm.

Because n differs for different λ s of light, the various λ s traveling through a lens focus at slightly different points.

The resulting blurring is...

