# **Introduction to Physics**

| NIS | ma    | י ב |  |
|-----|-------|-----|--|
| 10  | 41110 |     |  |



# Pure Science vs. Applied Science



pure science:

- -- facts
- -- relationships between things -- theories



Law or Theory?

applied science (technology):

- -- tools
- -- techniques



-- using science creatively



- e.g., conservation laws, gravity
- e.g., combustion theory of burning, atomic theory, kinetic-molecular theory, theory of evolution by natural selection

#### The Scientific Method



Credited to Galileo Galilei (1564 – 1642) and Sir Francis Bacon (1561 – 1626).



Galileo



## Activities of the Scientific Method

Observe events.

-- Quantitative data are most useful.

Propose a hypothesis:



Carry out controlled experiments:

Draw a valid conclusion.

#### **Other Important Terms**

We cannot study everything at once.

system:

<u>surroundings</u>:



Models simplify phenomena.

### **Measurements in Experiments**

Measurements have dimensions and require units.



derived units: these result when base units are combined by X or  $\div$ 

e.g., area  $\rightarrow$  volume  $\rightarrow$ density  $\rightarrow$  momentum  $\rightarrow$ 

### Accuracy and Precision

Video 118 (4:52) All numerical data are the result of uncertain measurements. <u>precision</u>: a measure of the degree of fineness of a measurement; it depends on the extent to which the instrument is calibrated

e.g.,

When repeated, precise measurements yield similar answers each time.

e.g., precise...

imprecise...

#### accuracy:

Three types of error affect accuracy.

human error:

-- minimize with repeated measurements

method error:

e.g., parallax in measuring with a meter stick

## instrument error:

e.g., bathroom scale that reads 5 lbs. too heavy



Significant Figures: Is a digit significant?

Video 121 (5:34)

Video 124

(5:10)

All non-zeroes are significant. Zeroes might or might not be.

Use the <u>box-and-dot method</u> to determine the sig figs in a given quantity.

- 1. Identify the leftmost AND rightmost non-zeroes.
- 2. Draw a box around these AND everything in-between.
- 3. All digits IN the box are significant.
- 4. Zeroes on the box's LEFT are NOT significant.
- 5. If there is a decimal point ANYWHERE, the zeroes on the box's RIGHT ARE significant. Otherwise, no.

EX.

| 124.00  | 0.0944 |
|---------|--------|
| 0.0032  | 2000   |
| 1300.40 | 800.   |
| 0.00304 | 0.0250 |

In scientific notation, the exponent has no effect on the number of sig. figs.

| EX. | 1.40 x 10 <sup>9</sup>  | 7.120 x 10 <sup>5</sup> |
|-----|-------------------------|-------------------------|
|     | 5.06 x 10 <sup>-3</sup> | 720 x 10 <sup>3</sup>   |

# Rules: Significant Figures and Mathematical Operations

1. When multiplying or dividing, the answer must have the same number of sig. figs. as does the quantity with the fewest sig. figs.

EX.  $1.52 \text{ C} \div 3.431 \text{ s} =$  $0.0251 \text{ N} \times 4.62 \text{ m} \div 3.7 \text{ s} =$ 

- 2. When adding or subtracting, the answer must be rounded to the place value of the least precise quantity.
- EX. 2.53 s + 117.4 s = 2.11 m + 104.056 m + 0.1205 m =
  - Conversion factors are <u>exact numbers</u>, so they do NOT affect the # of sig. figs.
    Your answer should have the same # of sig. figs. as does the quantity you start with.

EX. Round to the correct number of significant figures.

| Calculator<br>says | 2 sig. figs. | 3 sig. figs. | 5 sig. figs. |
|--------------------|--------------|--------------|--------------|
| 75.6               |              |              |              |
| 0.528396           |              |              |              |
| 387600             |              |              |              |
| 4200               |              |              |              |
| 8.4845E-4          |              |              |              |

## Math Review



| Prefix | Symbol | Meaning           |
|--------|--------|-------------------|
| giga-  | G      | 10 <sup>9</sup>   |
| mega-  | М      | 10 <sup>6</sup>   |
| kilo-  | k      | 10 <sup>3</sup>   |
| deci-  | d      | 10 <sup>-1</sup>  |
| centi- | С      | 10 <sup>-2</sup>  |
| milli- | m      | 10 <sup>-3</sup>  |
| micro- | μ      | 10 <sup>-6</sup>  |
| nano-  | n      | 10 <sup>-9</sup>  |
| pico-  | р      | 10 <sup>-12</sup> |

Conversions

(5:59)

EX. Convert 4.83 cm to nm.

EX. Convert 418 km/h to m/s.

