Unit 9: The Gas Laws

The Atmosphere \rightarrow an "ocean" of gases mixed together

Composition

nitrogen (N ₂)	~78%
oxygen (O ₂)	~21%
argon (Ar)	.~0.93%
carbon dioxide (CO ₂)	.~0.03%
water vapor (H ₂ O)	~0.1%

Trace amounts of: He, Ne, Rn, SO₂, CH_4 , N_xO_x, etc.

Depletion of the Ozone Layer

Ozone (O_3) in upper atmosphere blocks ultraviolet (UV) light from Sun. UV causes skin cancer and cataracts.

O₃ depletion is caused by chlorofluorocarbons (CFCs).

O₃ is replenished with each strike of lightning.

CO₂ and CH₄ ("<u>greenhouse gases</u>") prevent reflected light from escaping, thus warming the atmosphere.

Why more CO_2 in atmosphere now than 500 years ago?

<u>burning of fossil fuels</u>

- -- petroleum
- -- natural gas
- -- wood

- deforestation
 - -- urban sprawl
 - -- wildlife areas
 - -- rain forests

* The burning of ethanol won't slow greenhouse effect.

What can we do?

- 1. Reduce consumption of fossil fuels.
- <u>At home</u>: insulate home; run dishwasher full; avoid temp. extremes (A/C & furnace); wash clothes on "warm," not "hot"

<u>On the road</u>: bike instead of drive; carpool; energy-efficient vehicles

- 2. Support environmental organizations.
- Rely on alternate energy sources.
 solar, wind energy, hydroelectric power

The Kinetic Molecular Theory (KMT)

- -- explains why gases behave as they do
- -- deals "/"ideal" gas particles...
 - 1. ... are so small that they are

assumed to have zero volume

- 2. ...are in constant, straight-line motion
- 3. ... experience elastic collisions

in which no energy is lost

- 4. ...have no attractive or repulsive forces toward each other
- 5. ...have an average kinetic energy (KE) that is proportional to the

absolute temp. of gas (i.e., Kelvin temp.)

AS TEMP. ↑, KE ↑

Theory "works," except at high pressures and low temps.

**Two gases ^w/same # of particles and at same temp. and pressure have the same kinetic energy.

KE is related to mass and velocity (KE = $\frac{1}{2}$ m v²) To keep same KE, as m \uparrow , v must \downarrow OR as m \downarrow , v must \uparrow

More massive gas particles are slower than less massive gas particles (on average).

Graham's Law

Consider two gases at same temp.

Gas 1:	$KE_1 = \frac{1}{2} m_1 v_1^2$
Gas 2:	$KE_2 = \frac{1}{2} m_2 v_2^2$

Since temp. is same, then...

$$KE_{1} = KE_{2}$$

$$\frac{1}{2} m_{1} v_{1}^{2} = \frac{1}{2} m_{2} v_{2}^{2}$$

$$m_{1} v_{1}^{2} = m_{2} v_{2}^{2}$$

Divide both sides by $m_1 v_2^2 \dots$

$$\left(\frac{1}{m_{1} v_{2}^{2}}\right)m_{1} v_{1}^{2} = m_{2} v_{2}^{2} \left(\frac{1}{m_{1} v_{2}^{2}}\right)$$
$$\frac{v_{1}^{2}}{v_{2}^{2}} = \frac{m_{2}}{m_{1}}$$

Take sq. rt. of both sides to get Graham's Law:

$$\frac{v_1}{v_2} = \sqrt{\frac{m_2}{m_1}}$$

To use Graham's Law, both gases must be at same temp.

<u>diffusion</u>: particle movement from high to low conc.

effusion: diffusion of gas particles

through an opening

For gases, rates of diffusion & effusion obey Graham's

law: more massive = slow; less massive = fast

On avg., carbon dioxide travels at 410 m/s at 25° C. Find avg. speed of chlorine at 25° C.

$$\frac{v_1}{v_2} = \sqrt{\frac{m_2}{m_1}} \rightarrow \frac{v_{Cl_2}}{v_{CO_2}} = \sqrt{\frac{m_{CO_2}}{m_{Cl_2}}} \rightarrow v_{Cl_2} = v_{CO_2} \sqrt{\frac{m_{CO_2}}{m_{Cl_2}}}$$
$$v_{Cl_2} = 410 \text{ m/s} \sqrt{\frac{44 \text{ g}}{71 \text{ g}}} = 320 \text{ m/s}$$

**Hint: Put whatever you're looking for in the numerator.

At a certain temp., fluorine gas travels at 582 m/s and a noble gas travels at 394 m/s. What is the noble gas?

$$\begin{array}{l} \displaystyle \frac{v_1}{v_2} = \sqrt{\frac{m_2}{m_1}} \rightarrow \frac{v_{F_2}}{v_{unk}} = \sqrt{\frac{m_{unk}}{m_{F_2}}} \rightarrow \left(\frac{v_{F_2}}{v_{unk}}\right)^2 = \frac{m_{unk}}{m_{F_2}} \\ m_{unk} = m_{F_2} \left(\frac{v_{F_2}}{v_{unk}}\right)^2 = 38 \text{ amu } \sqrt{\frac{582}{394}} = 82.9 \text{ amu } \rightarrow \boxed{\text{Kr}} \\ \text{CH}_4 \text{ moves } 1.58 \text{ times faster than which noble gas?} \\ \text{Governing relation:} \quad v_{CH_4} = 1.58 v_{unk} \\ \displaystyle \frac{v_{CH_4}}{v_{unk}} = \sqrt{\frac{m_{unk}}{m_{CH_4}}} \rightarrow \frac{1.58 v_{unk}}{v_{unk}} = \sqrt{\frac{m_{unk}}{m_{CH_4}}} \rightarrow (1.58)^2 = \frac{m_{unk}}{m_{CH_4}} \\ m_{unk} = (1.58)^2 m_{CH_4} = (1.58)^2 (16 \text{ amu}) = 39.9 \text{ amu } \rightarrow \boxed{\text{Ar}} \\ \text{HCl and NH_3 are released at same time from opposite ends of 1.20 m horiz. tube. Where do gases meet? \\ \text{HCl } () \longrightarrow & () \text{NH}_3 \\ 1.20 m \\ \frac{v_{NH_3}}{v_{HCl}} = \sqrt{\frac{m_{HCl}}{m_{NH_3}}} = \sqrt{\frac{36.5}{17}} = 1.465 \rightarrow v_{NH_3} = 1.465 v_{HCl} \\ \hline \text{Velocities are relative; pick easy \#s: } v_{HCl} = 1.000 \text{ m/s} \\ 1.20 = \text{HCl dist.} + \text{NH}_3 \text{ dist.} = 1.000 \text{ t} + 1.465 \text{ t} \rightarrow \text{t} = 0.487 \text{ s} \\ \text{So HCl dist.} = 1.000 \text{ m/s} (0.487 \text{ s}) = \boxed{0.487 \text{ m}} \end{array}$$

Pressure occurs when a force is

dispersed over a given surface area.

At sea level, air pressure is standard pressure:

1 atm, 101.3 kPa, 760 mm Hg, 14.7 lb/in²

Find force of air pressure acting \int on a baseball field tarp...

$$100 \text{ ft.}$$

$$A = [100 \text{ ft} \left(\frac{12 \text{ in}}{1 \text{ ft}}\right)]^2 = 1.44 \text{ x} 10^6 \text{ in}^2$$

$$F = P \text{ A} = 14.7 \text{ lb/in}^2 (1.44 \text{ x} 10^6 \text{ in}^2) = 2 \text{ x} 10^7 \text{ lb.}$$

$$F = 2 \text{ x} 10^7 \text{ lb.} \left(\frac{1 \text{ ton}}{2000 \text{ lb.}}\right) = 10,000 \text{ tons}$$

Key: Gases exert pressure in all directions.
 Atmospheric pressure changes with altitude:
 as altitude Î, pressure

roof in hurricane

HIGH P

Pressure and Temperature

STP (Standard Temperature and Pressure)

standard temperature	standard pressure		
0°C	1 atm		
273 K	101.3 kPa		
	760 mm Hg		

Equations / Conversion Factors:

 $K = {}^{\circ}C + 273$ ${}^{\circ}C = K - 273$ 1 atm = 101.3 kPa = 760 mm Hg

Convert 25°C to Kelvin.

 $K = {}^{\circ}C + 273 = 25{}^{\circ}C + 273 = 298 K$

How many kPa is 1.37 atm?

 $X kPa = 1.37 atm \left(\frac{101.3 kPa}{1 atm}\right) = 138.8 kPa$

How many mm Hg is 231.5 kPa?

$$X \text{ mm Hg} = 231.5 \text{ kPa} \left(\frac{760 \text{ mm Hg}}{101.3 \text{ kPa}}\right) = 1737 \text{ mm Hg}$$

The Ideal Gas Law

$$PV = nRT$$

P = pressure (in kPa)n = # of moles of gas (mol)V = volume (in L or dm³)T = temperature (in K)R = universal gas constant =8.314 $\frac{L - kPa}{mol - K}$

32 g oxygen at 0°C is under 101.3 kPa of pressure. Find sample's volume.

T = 0°C + 273 = 273 K
$$n = 32 \text{ g O}_2 \left(\frac{1 \text{ mol } \text{O}_2}{32 \text{ g } \text{O}_2}\right) = 1.0 \text{ mol}$$

P V = n R T \rightarrow V = $\frac{n \text{ R T}}{P} = \frac{1 \text{ mol } (8.314) (273)}{101.3} = 22.4 \text{ L}$

0.25 g carbon dioxide fills a 350 mL container at 127°C. Find pressure in mm Hg. $T = 127^{\circ}C + 273 = 400 \text{ K}$ V = 0.35 L $n = 0.25 \text{ g } \text{CO}_2 \left(\frac{1 \text{mol } \text{CO}_2}{44 \text{ g } \text{CO}_2}\right) = 0.00568 \text{ mol}$ $P \text{ V} = n \text{ R } \text{ T} \rightarrow P = \frac{n \text{ R } \text{ T}}{V} = \frac{0.00568 (8.314) (400)}{0.35} = 54.0 \text{ kPa}$ $P = 54.0 \text{ kPa} \left(\frac{760 \text{ mm } \text{Hg}}{101.3 \text{ kPa}}\right) = 405 \text{ mm } \text{Hg}$

P, V, T Relationships

At constant P, as gas T ↑, its V ↑. """",""T↓,"V↓.

At constant V, as gas T ↑, its P ↑. """", ""T↓, "P↓. Charles's Law

At constant T, as P on gas ↑, its V↓. ""","P""↓,""↑.

<u>Boyle's Law</u>

The Combined Gas Law

$$\frac{P_{1} V_{1}}{T_{1}} = \frac{P_{2} V_{2}}{T_{2}}$$

- P = pressure (any unit will work)
- V = volume (any unit will work)
- T = temperature (must be in Kelvin)
- 1 = initial conditions
- 2 = final conditions

A gas has vol. 4.2 L at 110 kPa. If temp. is constant, find pres. of gas when vol. changes to 11.3 L.

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \rightarrow P_1 V_1 = P_2 V_2$$
110 kPa (4.2 L) = P_2 (11.3 L) P_2 = 40.9 kPa

Original temp. and vol. of gas are 150°C and 300 dm³. Final vol. is 100 dm³. Find final temp. in °C, assuming constant pressure.

$$T_{1} = 150^{\circ}C + 273 = 423 \text{ K}$$

$$\frac{P_{1} V_{1}}{T_{1}} = \frac{P_{2} V_{2}}{T_{2}} \rightarrow \frac{V_{1}}{T_{1}} = \frac{V_{2}}{T_{2}} \rightarrow \frac{300 \text{ dm}^{3}}{423 \text{ K}} = \frac{100 \text{ dm}^{3}}{T_{2}}$$

300 dm³ (T₂) = 423 K (100 dm³) → 141 K = $\begin{bmatrix} -132^{\circ}C \end{bmatrix}$

A sample of methane occupies 126 cm³ at –75°C and 985 mm Hg. Find its vol. at STP.

$$T_{1} = -75^{\circ}C + 273 = 198 \text{ K}$$

$$\frac{P_{1} V_{1}}{T_{1}} = \frac{P_{2} V_{2}}{T_{2}} \rightarrow \frac{985 \text{ mm Hg}(126 \text{ cm}^{3})}{198 \text{ K}} = \frac{760 \text{ mm Hg}(V_{2})}{273 \text{ K}}$$

$$985 (126) (273) = 198 (760) V_{2} \qquad V_{2} = 225 \text{ cm}^{3}$$

Density of Gases

Density formula for any substance:

For a sample of gas, mass is constant, but pres. and/or temp. changes cause gas's vol. to change. Thus, its density will change, too.

Density of Gases Equation:

** As always, T's must be in K.

A sample of gas has density 0.0021 g/cm³ at –18°C and 812 mm Hg. Find density at 113°C and 548 mm Hg.

$$I_{1} = -18^{\circ}C + 273 = 255 \text{ K} \qquad I_{2} = 113^{\circ}C + 273 = 386 \text{ K}$$
$$\frac{P_{1}}{T_{1}D_{1}} = \frac{P_{2}}{T_{2}D_{2}} \rightarrow \frac{812}{255(0.0021)} = \frac{548}{386(D_{2})}$$
$$812(386)(D_{2}) = 255(0.0021)(548) \rightarrow D_{2} = 9.4 \times 10^{-4} \text{ g/cm}^{3}$$

A gas has density 0.87 g/L at 30°C and 131.2 kPa. Find density at STP.

$$T_{1} = 30^{\circ}C + 273 = 303 \text{ K}$$

$$\frac{P_{1}}{T_{1}D_{1}} = \frac{P_{2}}{T_{2}D_{2}} \rightarrow \frac{131.2}{303(0.87)} = \frac{101.3}{273(D_{2})}$$

131.2(273)(D₂) = 303(0.87)(101.3) → D₂ = 0.75 g/L

Find density of argon at STP.

$$D = \frac{m}{V} = \frac{39.9 \text{ g}}{22.4 \text{ L}} = 1.78 \frac{\text{g}}{\text{L}}$$

Find density of nitrogen dioxide at 75°C and 0.805 atm.

D of NO₂ @ STP... D =
$$\frac{m}{V} = \frac{46.0 \text{ g}}{22.4 \text{ L}} = 2.05 \frac{\text{g}}{\text{L}}$$

 $T_2 = 75^{\circ}\text{C} + 273 = 348 \text{ K}$
 $\frac{P_1}{T_1 D_1} = \frac{P_2}{T_2 D_2} \rightarrow \frac{1}{273 (2.05)} = \frac{0.805}{348 (D_2)}$
1 (348) (D₂) = 273 (2.05) (0.805) \rightarrow D₂ = 1.29 g/L

A gas has mass 154 g and density 1.25 g/L at 53°C and 0.85 atm. What vol. does sample occupy at STP?

Find D at STP. $T_1 = 53^{\circ}C + 273 = 326 \text{ K}$

$$\frac{P_1}{T_1 D_1} = \frac{P_2}{T_2 D_2} \rightarrow \frac{0.85}{326 (1.25)} = \frac{1}{273 (D_2)}$$

0.85 (273) (D₂) = 326 (1.25) (1) \rightarrow D₂ = 1.756 g/L

Find vol. when gas has that density.

$$D_2 = \frac{m}{V_2} \rightarrow V_2 = \frac{m}{D_2} = \frac{154 \text{ g}}{1.756 \text{ g/L}} = 87.7 \text{ L}$$

Dalton's Law of Partial Pressure

In a gaseous mixture, a gas's **partial pressure** is the one the gas would exert if it were by itself in the container.

The mole ratio in a mixture of gases determines each gas's partial pressure.

Dalton's Law: the total pressure exerted by a mixture of gases is the sum of all the partial pressures

$$\mathsf{P}_{\mathsf{Z}} = \mathsf{P}_{\mathsf{A},\mathsf{Z}} + \mathsf{P}_{\mathsf{B},\mathsf{Z}} + \dots$$

80.0 g each of He, Ne, and Ar are in a container. The total pressure is 780 mm Hg. Find each gas's partial pressure.

$$80 \text{ g He}\left(\frac{1 \text{ mol}}{4 \text{ g}}\right) = 20 \text{ mol He}$$

$$80 \text{ g Ne}\left(\frac{1 \text{ mol}}{20 \text{ g}}\right) = 4 \text{ mol Ne}$$

$$80 \text{ g Ar}\left(\frac{1 \text{ mol}}{40 \text{ g}}\right) = 2 \text{ mol Ar}$$

$$P_{\text{He}} = 600 \text{ mm Hg}, P_{\text{Ne}} = 120 \text{ mm Hg}, P_{\text{Ar}} = 60 \text{ mm Hg}$$

$$P_{\text{He}} = 600 \text{ mm Hg}, P_{\text{Ne}} = 120 \text{ mm Hg}, P_{\text{Ar}} = 60 \text{ mm Hg}$$

Dalton's Law:
$$P_Z = P_{A,Z} + P_{B,Z} + \dots$$

Two 1.0 L containers, A and B, contain gases under 2.0 and 4.0 atm, respectively. Both gases are forced into Container B. Find total pres. of mixture in B.

	Px	V _x	Vz	P _{x,z}
Α	2.0 atm	1.0 L	1.0 L	2.0 atm
В	4.0 atm	1.0 L		4.0 atm
			Total =	6.0 atm

Two 1.0 L containers, A and B, contain gases under 2.0 and 4.0 atm, respectively. Both gases are forced into Container Z (^w/vol. 2.0 L). Find total pres. of mixture in Z.

	Px	Vx	Vz	P _{x,z}
Α	2.0 atm	1.0 L	2.0 L	1.0 atm
В	4.0 atm	1.0 L		2.0 atm
			Total =	3.0 atm

Find total pressure of mixture in Container Z.

	Px	V _x		Vz	P _{x,z}
Α	3.2 atm	1.3 L		2.3 L	1.8 atm
В	1.4 atm	2.6 L			1.6 atm
С	2.7 atm	3.8 L			4.5 atm
			Total =	= 7.9 atm	

Gas Stoichiometry

Find vol. hydrogen gas made when 38.2 g zinc react */excess hydrochloric acid. Pres.=107.3 kPa; temp.= 88°C.

$$Zn (s) + 2 HCl (aq) → ZnCl2 (aq) + H2 (g)$$

$$38.2 g Zn excess \qquad V = X L H_2$$

$$P = 107.3 kPa$$

$$T = 88°C ***$$

$$X mol H_2 = 38.2 g Zn \left(\frac{1mol Zn}{65.4 g Zn}\right) \left(\frac{1mol H_2}{1mol Zn}\right) = 0.584 mol H_2$$
At STP, we'd use 22.4 L per 1 mol, but we aren't at STP.

$$P V = n R T \rightarrow V = \frac{n R T}{P} = \frac{0.584 \text{ mol} (8.314) (361)}{107.3} = 16.3 L$$

What mass solid magnesium is req'd to react ^w/250 mL carbon dioxide at 1.5 atm and 77°C to produce solid magnesium oxide and solid carbon?

$2 \operatorname{Mg}(s) + \operatorname{CO}_2(g) \rightarrow 2 \operatorname{MgO}(s) + \operatorname{C}(s)$

 $X g Mg \qquad V = 250 \text{ mL} \longrightarrow 0.25 \text{ L}$ $P = 1.5 \text{ atm} \longrightarrow 151.95 \text{ kPa}$ $T = 77^{\circ}\text{C} \longrightarrow 350 \text{ K}$ $P V = n R T \rightarrow n = \frac{P V}{R T} = \frac{151.95 (0.250)}{8.314 (350)} = 0.013 \text{ mol CO}_2$ $X g Mg = 0.013 \text{ mol CO}_2 \left(\frac{2 \text{ mol Mg}}{1 \text{ mol CO}_2}\right) \left(\frac{24.3 \text{ g Mg}}{1 \text{ mol Mg}}\right) = 0.63 \text{ g Mg}$

Vapor Pressure

- -- a measure of the tendency for liquid particles to enter gas phase at a given temp.
- -- a measure of "stickiness" of liquid particles to each other

NOT all liquids have same v.p. at same temp.

Volatile substances evaporate easily (have high v.p.'s). BOILING \rightarrow when vapor pressure = confining pressure (usually from atmosphere)

At sea level and 20°C...

