Unit 5: Bonding and Inorganic Nomenclature

Chemical Bonding

 Ionic Bonds: atoms give up or gain e⁻ and are attracted to each other by coulombic attraction

Na loses an e [−]	CI gains an e ⁻	
Na → Na ¹⁺ + e ⁻	$CI + e^- \rightarrow CI^{1-}$	
<u>ionic compounds</u> = <u>salts</u>	Na ¹⁺ + Cl ^{1−} → NaCl	

 $K^{1+} + NO_3^{1-} \rightarrow KNO_3$

where NO_3^{1-} is a <u>polyatomic ion</u>: a charged group of atoms that stay together

Properties of Salts

- very hard each ion is bonded to several oppositely-charged ions
- 2. high melting points many bonds must be

broken

3. brittle – with sufficient force, like atoms are brought next to each other and repel

Covalent Bonds

...atoms share e⁻ to get a full valence shell

 $\begin{array}{ccc} C & 1s^2 2s^2 2p^2 & (4 \text{ v.e}^-) \\ F & 1s^2 2s^2 2p^5 & (7 \text{ v.e}^-) \end{array}$

both need 8 v.e⁻ for a full outer shell (octet rule)

Lewis structure: a model of a covalent molecule that shows all of the valence e⁻

- Two shared e⁻ make a single covalent bond, four make a double bond, etc.
- 2. unshared pairs: pairs of unbonded valence e
- Each atom needs a full outer shell, i.e., 8 e[−].
 Exception: H needs 2 e[−]

carbon tetrafluoride (CF₄)

<u>covalent compounds</u> = <u>molecular compounds</u> -- have lower melting points than do ionic compounds

Metallic Bonds

In metals, valence shells of atoms overlap, so v.e⁻ are free to travel between atoms through material

Properties of Metals

conduct heat and electricity; ductile; malleable

Other Types of Bonds

dipole-dipole forces, hydrogen bonds, London dispersion forces; & ion-dipole forces (solutions)

Writing Formulas of Ionic Compounds

chemical formula: has neutral charge;

shows types of atoms and how many of each

To write an ionic compound's formula, we need:

- 1. the two types of ions
- 2. the charge on each ion

Writing Formulas ^w/Polyatomic lons

Parentheses are required only when you need more than one "bunch" of a particular polyatomic ion.

Ba ²⁺	and	SO4 ²⁻	BaSO ₄
Mg ²⁺	and	NO ₂ ¹⁻	Mg(NO ₂) ₂
NH4 ¹⁺	and	CIO ₃ ^{1–}	NH ₄ ClO ₃
Sn ⁴⁺	and	SO4 ²⁻	Sn(SO ₄) ₂
Fe ³⁺	and	$Cr_{2}O_{7}^{2-}$	$Fe_2(Cr_2O_7)_3$
NH_4^{1+}	and	N ^{3–}	(NH ₄) ₃ N

Inorganic Nomenclature

Ionic Compounds (cation/anion combos)

Single-Charge Cations with Elemental Anions

The single-charge cations are:

groups 1, 2, 13, and Ag¹⁺ and Zn²⁺

- A. To name, given the formula:
 - 1. Use name of cation.
 - 2. Use name of anion (it has the ending "ide").
 NaF sodium fluoride
 BaO barium oxide
 Na₂O sodium oxide
 BaF₂ barium fluoride
- B. To write formula, given the name:
 - 1. Write symbols for the two types of ions.
 - 2. Balance charges to write formula.

silver sulfide	Ag ¹⁺ S ^{2–}	Ag ₂ S
zinc phosphide	$Zn^{2+}P^{3-}$	Zn_3P_2
calcium iodide	Ca ²⁺ I ¹⁻	Cal ₂

Multiple-Charge Cations with Elemental Anions

The multiple-charge cations are: Pb^{2+}/Pb^{4+} ,

Sn²⁺/Sn⁴⁺, transition elements (not Ag or Zn)

A. To name, given the formula:

- 1. Figure out charge on cation.
- 2. Write name of cation.
- Write Roman numerals in () to show cation's charge.
- 4. Write name of anion.

FeO	$Fe^{?}O^{2-}$	iron (II) oxide
Fe_2O_3	$2 \text{ Fe}^{?} 3 \text{ O}^{2-}$	iron (III) oxide
CuBr	Cu [?] Br ¹⁻	copper (I) bromide
CuBr ₂	Cu [?] 2 Br ¹⁻	copper (II) bromide

Stock System

of nomenclature

- B. To find the formula, given the name:
 - 1. Write symbols for the two types of ions.
 - 2. Balance charges to write formula.

cobalt (III) chloride	Co ³⁺ Cl ¹⁻	CoCl ₃
tin (IV) oxide	Sn ⁴⁺ O ²⁻	SnO ₂
tin (II) oxide	Sn ²⁺ O ²⁻	SnO

Traditional System of Nomenclature

...used historically (and still some today) to name compounds ^w/multiple-charge cations

- To use: 1. Use Latin root of cation.
 - 2. Use -ic ending for higher charge;

" *-ous* " lower

3. Then say name of anion, as usual.

Element	Latin root	-ic	-ous
gold, Au	aur-	Au ³⁺	Au ¹⁺
lead, Pb	plumb-	Pb ⁴⁺	Pb ²⁺
tin, Sn	stann-	Sn ⁴⁺	Sn ²⁺
copper, Cu	cupr-	Cu ²⁺	Cu ¹⁺
iron, Fe	ferr-	Fe ³⁺	Fe ²⁺

Write formulas:

cuprous sulfide $Cu^{1+} S^{2-}$ Cu_2S auric nitride $Au^{3+} N^{3-}$ AuN ferrous fluoride $Fe^{2+} F^{1-}$ FeF_2 Write names: Pb_3P_4 3 Pb^2 4 P^{3-} plumbic phosphide Pb_3P_2 3 Pb^2 2 P^{3-} plumbous phosphide $SnCl_4$ Sn^2 4 Cl^{1-} stannic chloride

"

Compounds Containing Polyatomic Ions Insert name of ion where it should go in the compound's name.

Write formulas:		
iron (III) nitrite	Fe ³⁺ NO ₃ ¹⁻	Fe(NO ₃) ₃
ammonium phosphide	NH4 ¹⁺ P ³⁻	(NH ₄) ₃ P
ammonium chlorite	NH4 ¹⁺ CIO2 ¹⁻	NH ₄ ClO ₂
zinc phosphate	Zn ²⁺ PO ₄ ³⁻	Zn ₃ (PO ₄) ₂
lead (II) permanganate	Pb ²⁺ MnO ₄ ¹⁻	Pb(MnO ₄) ₂

Write nam	ies:	
$(NH_4)_2S_2O_3$		ammonium thiosulfate
AgBrO ₃		silver bromate
(NH ₄) ₃ N		ammonium nitride
U(CrO ₄) ₃	U [?] 3 CrO ₄ ^{2–}	uranium (VI) chromate
$Cr_2(SO_3)_3$	2 Cr [?] 3 SO ₃ ²⁻	chromium (III) sulfite

Covalent Compounds

-- contain two types of nonmetals Key: FORGET CHARGES

What to do:

Use Greek prefixes to indicate how many atoms of each element, but don't use "mono" on first

element.

1 – mono	6 – hexa
2 – di	7 – hepta
3 – tri	8 – octa
4 – tetra	9 – nona
5 – penta	10 – deca

EXAMPLES:

carbon dioxide

CO

dinitrogen trioxide

 N_2O_5

carbon tetrachloride

 NI_3

 CO_2

carbon monoxide

 N_2O_3

dinitrogen pentoxide

 CCI_4

nitrogen triiodide

Acid Nomenclature

binary acids: acids "/H and one other element

Binary Acid Nomenclature

- 1. Write "hydro."
- 2. Write prefix of the other element,

followed by "-ic acid."

HF	hydrofluoric acid
HCI	hydrochloric acid
HBr	hydrobromic acid
hydroiodic acid	ні
hydrosulfuric acid	H_2S

oxyacids: acids containing H, O, and one other

element

Common <u>oxyanions</u> (polyatomic ions that contain oxygen) that combine with H to make oxyacids:

BrO ₃ ^{1–}	NO ₃ ^{1–}
CO3 ²⁻	PO4 ³⁻
	SO4 ²⁻
IO ₃ ^{1–}	

Oxyacid Nomenclature

Write prefix of oxyanion, followed by "-ic acid."

HBrO ₃	bromic acid
HCIO ₃	chloric acid
H_2CO_3	carbonic acid
sulfuric acid	H_2SO_4
phosphoric acid	H ₃ PO₄

Above examples show "most common" forms of the oxyacids. If an oxyacid differs from the above by the # of O atoms, the name changes are as follows:

	one more O	=	per	_ic acid	
"most common" # of O		=	ic acid		
	one less O	=	0	us acid	
	two fewer O	=	hypo	ous acid	J
HCIO ₄			perchloric acid		
HCIO ₃			chloric acid		
HCIO ₂			chlorous acid		
HCIO			hypochlorous acid		
phosphorous acid			H ₃ PO ₃		
hypobromous acid			HBrO		
persulfuric acid			H_2SO_5		

Empirical Formula and Molecular Formula

lowest-terms formula

shows the true number and type of atoms in a molecule

Compound	Molecular Formula	Empirical Formula
glucose	$C_6H_{12}O_6$	CH ₂ O
propane	C_3H_8	C_3H_8
butane	C_4H_{10}	C_2H_5
naphthalene	$C_{10}H_8$	C_5H_4
sucrose	$C_{12}H_{22}O_{11}$	$C_{12}H_{22}O_{11}$
octane	C ₈ H ₁₈	C ₄ H ₉