Chemistry: Stoichiometry

- 1. How many moles of O₂ should be supplied to burn 1 mol of C₃H₈ (propane) molecules in a camping stove?
- 2. How many moles of O₂ molecules should be supplied to burn 1 mol of CH₄ molecules in a domestic furnace?
- 3. Sodium thiosulfate ($Na_2S_2O_3$), photographer's "hypo" reacts with unexposed silver bromide in the film emulsion to form sodium bromide and a compound of formula $Na_5[Ag(S_2O_3)_3]$. How many moles of $Na_2S_2O_3$ formula units are needed to make 0.10 mol of AgBr soluble?
- 4. Calculate the mass of alumina (Al₂O₃) produced when 100 g of aluminum burns in oxygen.
- 5. "Slaked lime," Ca(OH) 2, is formed from "quick-lime" (CaO) by adding water. What mass of water is needed to convert 10 kg of quicklime to slaked lime? What mass of slaked lime is produced?
- 6. Camels store the fat tristearin ($C_{57}H_{110}O_6$) in the hump. As well as being a source of energy, the fat is a source of water, because when it is used the reaction

$$2 C_{57}H_{110}O_6(s) + 163 O_2(g) \rightarrow 114 CO_2(g) + 110 H_2O(f)$$

takes place. What mass of water is available from 1.0 kg of fat?

- 7. The compound diborane (B_2H_6) was at one time considered for use as a rocket fuel. How many grams of liquid oxygen would a rocket have to carry to burn 10 kg of diborane completely? (The products of the combustion are B_2O_3 and H_2O .)
 - 8. Given the balanced chemical equation

$$Br_2 + 2 Nal \rightarrow 2 NaBr + I_2$$

How many moles of sodium bromide (NaBr) could be produced from 0.172 mol of bromine (Br₂)?

9. How many formula units of calcium oxide (CaO) can be produced from 4.9×10^5 molecules of oxygen gas (O₂) that react with calcium (Ca) according to this balanced chemical equation?

$$2 \operatorname{Ca}(s) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{CaO}(s)$$

10. Aluminum metal (Al) reacts with sulfur (S) to produce aluminum sulfide (Al_2S_3) according to this balanced chemical equation:

$$2 \text{ Al}(s) + 3 \text{ S}(s) \rightarrow \text{Al}_2 \text{S}_3(s)$$

How many atoms of aluminum will react completely with 1.33×10^{24} atoms of sulfur?

Name _____ Hr ___

LIMITING REAGENTS

- 11. What is the maximum mass of methane (CH₄) that can be burned if only 1.0 g of oxygen is available?
- 12. What is the maximum mass of glucose $(C_6H_{12}O_6)$ that can be burned in 10 g of oxygen?
- 13. The solid fuel in the booster stage of the space shuttle is a mixture of ammonium perchlorate and aluminum powder, which react as follows:

$$6 \text{ NH}_4\text{CIO}_4(s) + 10 \text{ Al}(s) \rightarrow 5 \text{ Al}_2\text{O}_3(s) + 3 \text{ N}_2(g) + 6 \text{ HCl}(g) + 9 \text{ H}_2\text{O}(g)$$

What mass of aluminum should be mixed with 5.0 x 10³ kg of ammonium perchlorate, if the reaction proceeds as stated?

- 14. A solution containing 5.0 g of silver nitrate was mixed with another containing 5.0 g of potassium chloride. Which was the limiting reagent for the precipitation of silver chloride?
 - 15. Given the balanced chemical equation

$$2 \text{ Ag} + \text{I}_2 \rightarrow 2 \text{ AgI}$$

How many atoms of silver metal (Ag) are required to react completely with 531.8 g of iodine (I₂) to produce silver iodide (AgI)?

- 16. The theoretical yield of ammonia in an industrial synthesis was 550 tons, but only 480 tons was obtained. What was the percentage yield of the reaction?
- 17. Calculate the volume occupied by 16.3 moles of nitrogen gas (N_2) at STP.
- 18. How many moles of fluorine gas (F₂) are contained in 0.269 dm³ container at STP?
- 19. Assuming that the gases are all at STP, find the volume of nitrogen dioxide gas (NO_2) that could be produced from 71.11 dm³ of nitrogen gas (N_2) according to this balanced chemical equation.

$$N_2(g) + 2 O_2(g) \rightarrow 2 NO_2(g)$$

20. How many moles of oxygen (O₂) would be needed to produce 79.60 moles of sulfur trioxide (SO₃) according to the following balanced chemical equation?

$$2 SO_2 + O_2 \rightarrow 2 SO_3$$

21. How many grams of water will be produced from 50 g hydrogen reacting with 50 g oxygen?

Think Critically

- 22. The reaction of 1 mol of C to form carbon monoxide in the reaction 2 C(s) + $O_2(g) \rightarrow 2$ CO(g) releases 113 kJ of heat. How much heat will be released by the combustion of 100 g of C according the the above information?
- 23. According to the balanced chemical equation; how many atoms of silver will be produced from combining 100 g of copper with 200 g of silver nitrate?

$$Cu(s) + 2 AgNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + 2 Ag(s)$$

24. According to the balanced chemical equation; how many moles of $SO_2(g)$ will be produced when 1.5 x 10^8 molecules of zinc sulfide react with 1000 dm³ of oxygen gas? Assume a 75% yield.

$$2 \operatorname{ZnS}(s) + 3 \operatorname{O}_{2}(g) \rightarrow 2 \operatorname{ZnO}(s) + 2 \operatorname{SO}_{2}(g)$$

- 25. I need to produce 500 g of lithium oxide(Li₂O)
 - a) how many grams of Lithium AND
 - b) how many liters of oxygen do I need

The balanced equation is: Li + $O_2 \rightarrow LiO_2$

26. How many grams of water will be produce from 50 g hydrogen reacting with 50 g oxygen?

Think Critically:

- 22. The reaction of 1 mol of C to form carbon monoxide in the reaction 2 C(s) + $O_2(g) \rightarrow 2$ CO(g) releases 113 kJ of heat. How much heat will be released by the combustion of 100 g of C according the the above information?
- 23. According to the balanced chemical equation; how many atoms of silver will be produced from combining 100 g of copper with 200 g of silver nitrate?

$$Cu(s) + 2 AgNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + 2 Ag(s)$$

24. According to the balanced chemical equation; how many moles of SO₂(g) will be produced when 1.5 x 10⁸ molecules of zinc sulfide react with 1000 dm³ of oxygen gas? Assume a 75% yield.

$$2 \operatorname{ZnS}(s) + 3 \operatorname{O}_{2}(g) \rightarrow 2 \operatorname{ZnO}(s) + 2 \operatorname{SO}_{2}(g)$$

- 25. I need to produce 500 g of lithium oxide(Li₂O)
 - a. how many grams of Lithium AND
 - b. how many liters of oxygen do I need

The balanced equation is: Li + $O_2 \rightarrow LiO_2$

26. How many grams of water will be produced from 50 g hydrogen reacting with 50 g oxygen?

Think Critically:

- 22. The reaction of 1 mol of C to form carbon monoxide in the reaction 2 C(s) + $O_2(g) \rightarrow 2$ CO(g) releases 113 kJ of heat. How much heat will be released by the combustion of 100 g of C according the the above information?
- 23. According to the balanced chemical equation; how many atoms of silver will be produced from combining 100 g of copper with 200 g of silver nitrate?

$$Cu(s) + 2 AgNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + 2 Ag(s)$$

24. According to the balanced chemical equation; how many moles of $SO_2(g)$ will be produced when 1.5 x 10^8 molecules of zinc sulfide react with 1000 dm³ of oxygen gas? Assume a 75% yield.

$$2 \operatorname{ZnS}(s) + 3 \operatorname{O}_2(g) \rightarrow 2 \operatorname{ZnO}(s) + 2 \operatorname{SO}_2(g)$$

- 25. I need to produce 500 g of lithium oxide(Li₂O)
 - a. how many grams of Lithium AND
 - b. how many liters of oxygen do I need

The balanced equation is: Li + $O_2 \rightarrow LiO_2$

26. How many grams of water will be produced from 50 g hydrogen reacting with 50 g oxygen?

Think Critically:

- 22. The reaction of 1 mol of C to form carbon monoxide in the reaction 2 C(s) + $O_2(g) \rightarrow 2$ CO(g) releases 113 kJ of heat. How much heat will be released by the combustion of 100 g of C according the the above information?
- 23. According to the balanced chemical equation; how many atoms of silver will be produced from combining 100 g of copper with 200 g of silver nitrate?

$$Cu(s) + 2 AgNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + 2 Ag(s)$$

24. According to the balanced chemical equation; how many moles of $SO_2(g)$ will be produced when 1.5 x 10^8 molecules of zinc sulfide react with 1000 dm³ of oxygen gas? Assume a 75% yield.

$$2 \operatorname{ZnS}(s) + 3 \operatorname{O}_2(g) \rightarrow 2 \operatorname{ZnO}(s) + 2 \operatorname{SO}_2(g)$$

- 25. I need to produce 500 g of lithium oxide(Li₂O)
 - a. how many grams of Lithium AND
 - b. how many liters of oxygen do I need

The balanced equation is: Li + $O_2 \rightarrow LiO_2$

26. How many grams of water will be produced from 50 g hydrogen reacting with 50 g oxygen?

Think Critically

- 22. The reaction of 1 mol of C to form carbon monoxide in the reaction 2 C(s) + $O_2(g) \rightarrow 2$ CO(g) releases 113 kJ of heat. How much heat will be released by the combustion of 100 g of C according the the above information?
- 23. According to the balanced chemical equation; how many atoms of silver will be produced from combining 100 g of copper with 200 g of silver nitrate?

$$Cu(s) + 2 AgNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + 2 Ag(s)$$

24. According to the balanced chemical equation; how many moles of SO₂(g) will be produced when 1.5 x 108 molecules of zinc sulfide react with 1000 dm³ of oxygen gas? Assume a 75% yield.

$$2 \operatorname{ZnS}(s) + 3 \operatorname{O}_2(g) \rightarrow 2 \operatorname{ZnO}(s) + 2 \operatorname{SO}_2(g)$$

- 25. I need to produce 500 g of lithium oxide(Li₂O)
 - a) how many grams of Lithium AND
 - b) how many liters of oxygen do I need

The balanced equation is: Li + $O_2 \rightarrow LiO_2$

- 26. A tin ore contains 3.5% SnO₂. How much tin is produced by reducing 2.0 kg of the ore with carbon? $SnO_2 + C \rightarrow Sn + CO_2$
- 27. If 36.5 g of HCl and 73 g of Zn are put together:

$$2 HCI + Zn \rightarrow ZnCI_2 + H_2$$

- a. Determine which reactant is the limiting reactant,
- b. Find the mass of ZnCl₂ formed,
- c. Find the volume of H₂ (@ STP) formed,
- d. Determine which reactant is in excess and by how much.
- 28. Many plants synthesize glucose by photosynthesis as follows:

$$CO_2(g) + H_2O(I) + energy \rightarrow C_6H_{12}O_6(s) + O_2(g)$$

- a. Write a balanced equation for this process,
 - b. How many molecules of water are needed to make one molecule of glucose?
 - c. How many liters of oxygen (@STP) are given off when 2.50 mol of glucose is synthesized?
 - d. How many moles of CO₂ are needed for a plant to make 2.50 mole of glucose?
 - e. How many carbon atoms are used to produce 2.50 mole of glucose?
 - How many dm³ of oxygen gas are produced from 9.32 dm 3 of CO₂ (all @ STP)?

29. Assume that the human body requires daily energy that comes from metabolizing 816 g of sucrose, C₁₂H₂₂O₁₁, using the following reaction: $C_{12}H_{22}O_{11}(s) + 12 O_2(g) \rightarrow 12 CO_2(g) +$ 11 H₂O(I) + energy

How many dm³ of pure oxygen (@ STP) is consumed by a human being in 24 hours?

30. A student has a mixture of KClO₃, K₂CO₃, and KCI. She heats 50 g of the mixture and determines that 5 g O₂ and 7 g CO₂ are produced by these reactions:

$$2 \text{ KCIO}_3(s) \rightarrow 2 \text{ KCI}(s) + 3 \text{ O}_2(g)$$

 $\text{K}_2\text{CO}_3(s) \rightarrow \text{K}_2\text{O}(s) + \text{CO}_2(g)$

KCI is not affected by the heat. What is the percent composition of the original mixture?

ANSWERS:

- 1. 5 mol O₂
- 2. 2 mol O₂
- 3. 0.3 mol Na₂S₂O₃
- 4. 189 g Al₂O₃
- 5. 3214 g H₂O and 13.2 kg slaked lime [Ca(OH)₂]
- 6. 998 g water
- 7. 34,783 g O₂
- 8. 0.344 mol NaBr
- 9. 9.8 x 10⁵ molecules CaO
 10. 8.9 x 10²³ atoms AI
- 11. 0.25 g CH₄
- 12. 9.375 g C₆H₁₂O₆
- 13. 1915 kg Al
- 14. silver nitrate
- 15. 2.5 x 10²⁴ atoms Ag
- 16. 87.3 % yield
- 17. 365 L N₂
- 18. 0.012 mol F₂
- 19. 142 L NO₂
- 20. 39.8 mol O₂
- 21. 56.25 g H₂O
- 22. 942,000 J
- 23. 7.1×10^{23} atoms Ag
- 24. 1.9 x 10⁻¹⁶mol (NOT 2.5 x 10⁻¹⁶mol: 75% Yield)
- b. LO_2 25a. g Li
- 26.
- 27a. b. C. d.
- b. 6 c. 336 d. 15 e. 9 x 10²⁴ 28a.
- 29. 641 L O₂
- 30. 15.2 g KCl