	Name: Hour: Date:
Che	emistry: Real Life Chemistry (for the Business World)
	work for Gateway as a purchasing agent. You are responsible for ordering certain parts for the newest el system. The following information is necessary for your order:
	one system requires 12 widgets and 48 watzits a watzit weighs 0.50 lbs. one system takes up 2 ft ³ of space a widget weighs 0.25 lbs.
Solve	e the following problems. Show your work and use units for full credit.
1. Y	ou are making 150 000 systems for next year. a. How many widgets must you order?
	b. How many watzits must you order?
2.	a. How much will the widgets weigh?
	b. How much will the watzits weigh?
3. Yo	our warehouse has a volume of 1 000 000 ft ³ . How many systems can you place there?
4. Yo	ou place your original order, but the factory producing watzits can only provide 2500 watzits. How many systems can you produce?
5. If	the factory producing watzits can only provide 2500 watzits a. How many widgets will do you need to order now?
	b. What will the total weight of these widgets be?
6. It	costs \$0.30 per widget and \$0.50 per watzit, what is the cost of a. 1 system?
	b. 150 000 systems?

7. If each system sells for \$250, how many systems must you sell to earn \$1 000 000 dollars *profit*?

	Name:
	Hour: Date:
Chemistry: Real Life Chemistry	
Imagine you are working as a chemist at Dow Chemic fertilizer that Dow will be producing next year. The fol	cals. You are responsible for ordering chemicals for a new llowing information is necessary for your order
1 mole of gas takes up 2	6.02×10^{23} molecules 22.4 L (or 22.4 dm 3) of space moles of NH $_3$ and 3 moles of CH $_4$
Use the above information to solve the following probl	ems. Show your work.
 You are making 150 000 moles of fertilizer. a. How many moles of NH₃ do you need? 	
b. How many moles of CH₄ do you need?	
2. a. How much will the NH ₃ weigh?	
b. How much will the CH₄ weigh?	
3. Your storage tank holds 1 000 000 dm ³ . How man	y moles of gas would it hold?
 You place your order, but the company that provided moles of NH₃ will you be able to use with this 	es CH_4 can only obtain 15 000 moles of CH_4 . How many quantity of CH_4 ?
 Using your information from question #4 a. How many molecules of NH₃ will you order 	r?
b. How much space will it take up?	
c. How much will it weigh?	

6. If it costs \$1.75 per mole of fertilizer produced, how much will it cost to make 150 000 moles?

Chemistry: Real Life Chemistry (for the Business World)

You work for Gateway as a purchasing agent. You are responsible for ordering certain parts for the newest model system. The following information is necessary for your order:

one system requires 12 widgets and 48 watzits a watzit weighs 0.50 lbs. one system takes up 2 ft³ of space a widget weighs 0.25 lbs.

Solve the following problems. Show your work and use units for full credit.

- 2. You are making 150 000 systems for next year.
 - a. How many widgets must you order?

x widgets = 150,000 systems
$$\left(\frac{12 \text{ widgets}}{1 \text{ system}}\right)$$
 = 1,800,000 widgets

b. How many watzits must you order?

x watzits = 150,000 systems
$$\left(\frac{48 \text{ watzits}}{1 \text{ system}}\right)$$
 = 7,200,000 watzits

2. a. How much will the widgets weigh?

x lbs = 1,800,000 widgets
$$\left(\frac{0.25 \text{ lbs}}{1 \text{ widget}}\right)$$
 = 450,000 lbs

b. How much will the watzits weigh?

x lbs = 7,200,000 watzits
$$\left(\frac{0.5 \text{ lbs}}{1 \text{ watzit}}\right)$$
 = 3,600,000 lbs

3. Your warehouse has a volume of 1 000 000 ft³. How many systems can you place there?

x systems = 1,000,000 ft³
$$\left(\frac{1 \text{ system}}{2 \text{ ft}^3}\right)$$
 = 500,000 systems

4. You place your original order, but the factory producing watzits can only provide 2500 watzits. How many systems can you produce?

x systems = 2500 watzits
$$\left(\frac{1 \text{ system}}{48 \text{ watzits}}\right)$$
 = 52 systems & (4 watzits left over)

- 5. If the factory producing watzits can only provide 2500 watzits...
 - a. How many widgets will do you need to order now?

x widgets = 2500 watzits
$$\left(\frac{12 \text{ widgets}}{48 \text{ watzits}}\right)$$
 = 625 widgets or

x widgets = 52 systems
$$\left(\frac{12 \text{ widgets}}{1 \text{ system}}\right)$$
 = 624 widgets

Chemistry: Real Life Chemistry (for the Business World)

b. What will the total weight of these widgets be?

x lbs = 635 widgets
$$\left(\frac{0.25 \text{ lbs}}{1 \text{ widget}}\right)$$
 = 156.25 lbs

x lbs = 624 widgets
$$\left(\frac{0.25 \text{ lbs}}{1 \text{ widget}}\right)$$
 = 156 lbs

- 6. It costs \$0.30 per widget and \$0.50 per watzit, what is the cost of...
 - a. 1 system?

x \$ /system= 12 widgets
$$\left(\frac{\$0.30}{1 \text{ widget}}\right)$$
 + 48 watzits $\left(\frac{\$0.50}{1 \text{ watzit}}\right)$ = \$27.60 /system

b. 150 000 systems?

$$x = 150,000 \text{ systems} \left(\frac{\$27.60}{1 \text{ system}} \right) = \$4,140,000$$

7. If each system sells for \$250, how many systems must you sell to earn \$1 000 000 dollars profit?

Chemistry: Real Life Chemistry

Imagine you are working as a chemist at Dow Chemicals. You are responsible for ordering chemicals for a new fertilizer that Dow will be producing next year. The following information is necessary for your order...

1 mole contains 6.02 x 10²³ molecules 1 mole of gas takes up 22.4 L (or 22.4 dm³) of space 1 mole of fertilizer requires 2 moles of NH₃ and 3 moles of CH₄

Use the above information to solve the following problems. Show your work.

- 1. You are making 150 000 moles of fertilizer.
 - a. How many moles of NH₃ do you need?

x mol NH₃ = 150,000 fertilizer
$$\left(\frac{2 \text{ mol NH}_3}{1 \text{ mol fertilizer}}\right)$$
 = 300,000 mol NH₃

b. How many moles of CH₄ do you need?

x mol CH₄ = 150,000 mol CH₄
$$\left(\frac{3 \text{ mol CH}_4}{1 \text{ mol fertilizer}}\right)$$
 = 450,000 mol CH₄

2. a. How much will the NH₃ weigh?

$$x g NH_3 = 300,000 \text{ mol } NH_3 \left(\frac{17 g NH_3}{1 \text{ mol } NH_3}\right) = 5,100,000 g NH_3 \text{ or } 5100 \text{ kg } NH_3$$

b. How much will the CH₄ weigh?

$$x g CH_4 = 450,000 \text{ mol } CH_4 \left(\frac{16 g CH_4}{1 \text{ mol } CH_4}\right) = 7,200,000 g CH_4 \text{ or } 7,200 \text{ kg } CH_4$$

3. Your storage tank holds 1 000 000 dm³. How many moles of gas would it hold?

x mol = 1,000,000 dm³
$$\left(\frac{1 \text{ mol gas}}{22.4 \text{ dm}^3}\right)$$
 = 44,643 mol gas (@STP)

4. You place your order, but the company that provides CH₄ can only obtain 15 000 moles of CH₄. How many moles of NH₃ will you be able to use with this quantity of CH₄?

$$x \text{ mol NH}_3 = 15,000 \text{ mol CH}_4 \left(\frac{2 \text{ mol NH}_3}{3 \text{ mol CH}_4} \right) = 10,000 \text{ mol NH}_3$$

- 5. Using your information from guestion #4...
 - a. How many molecules of NH₃ will you order?

$$\text{x molecules NH}_3 = 10,000 \text{ mol NH}_3 \\ \left(\frac{6.02 \times 10^{23} \text{ molecules NH}_3}{1 \text{ mol NH}_3} \right) = 6.02 \times 10^{27} \text{ molecules NH}_3$$

Chemistry: Real Life Chemistry

- 5. Using your information from question #4...
 - a. How many molecules of NH₃ will you order?

$$\text{x molecules NH}_3 = 10,000 \text{ mol NH}_3 \left(\frac{6.02 \times 10^{23} \text{ molecules NH}_3}{1 \text{ mol NH}_3} \right) = 6.02 \times 10^{27} \text{ molecules NH}_3$$

b. How much space will it take up?

$$x \ dm^3 = 10,000 \ mol \ NH_3 \ + \ 15,000 \ mol \ CH_4$$

$$x \ dm^3 = 25,000 \ mol \ "gas" \Bigg(\frac{22.4 \ dm^3}{1 mol \ gas} \Bigg) = 56,000 \ dm^3$$

c. How much will it weigh?

6. If it costs \$1.75 per mole of fertilizer produced, how much will it cost to make 150 000 moles?

$$x = 150,000 \text{ mol fertilizer} \left(\frac{\$1.75}{1 \text{ mol fertilizer}} \right) = \$2,625,000$$

Real Life Chemistry (for the Business World)

1a.

x widgets = 150,000 systems
$$\left(\frac{12 \text{ widgets}}{1 \text{ system}}\right)$$
 = 1,800,000 widgets

b

x watzits = 150,000 systems
$$\left(\frac{48 \text{ watzits}}{1 \text{ system}}\right)$$
 = 7,200,000 watzits

2a.

x lbs = 1,800,000 widgets
$$\left(\frac{0.25 \text{ lbs}}{1 \text{ widget}}\right)$$
 = 450,000 lbs

b.

x lbs = 7,200,000 watzits
$$\left(\frac{0.5 \text{ lbs}}{1 \text{ watzit}}\right)$$
 = 3,600,000 lbs

3.

x systems = 1,000,000 ft³
$$\left(\frac{1 \text{ system}}{2 \text{ ft}^3}\right)$$
 = 500,000 systems

4.

x systems = 2500 watzits
$$\left(\frac{1 \text{ system}}{48 \text{ watzits}}\right)$$
 = 52 systems & (4 watzits left over)

5a.

x widgets = 2500 watzits
$$\left(\frac{12 \text{ widgets}}{48 \text{ watzits}}\right)$$
 = 625 widgets

b.

x lbs = 635 widgets
$$\left(\frac{0.25 \text{ lbs}}{1 \text{ widget}}\right)$$
 = 156.25 lbs

6a.

x \$ /system = 12 widgets
$$\left(\frac{\$0.30}{1 \text{ widget}}\right)$$
 + 48 watzits $\left(\frac{\$0.50}{1 \text{ watzit}}\right)$ = \$27.60 /system

b.

$$x = 150,000 \text{ systems} \left(\frac{\$27.60}{1 \text{ system}} \right) = \$4,140,000$$

7.

Real Life Chemistry

1a.

x mol NH₃ = 150,000 fertilizer
$$\left(\frac{2 \text{ mol NH}_3}{1 \text{ mol fertilizer}}\right)$$
 = 300,000 mol NH₃

b

x mol CH₄ = 150,000 mol CH₄
$$\left(\frac{3 \text{ mol CH}_4}{1 \text{ mol fertilizer}}\right)$$
 = 450,000 mol CH₄

2a.

$$x g NH_3 = 300,000 \text{ mol } NH_3 \left(\frac{17 g NH_3}{1 \text{ mol } NH_3}\right) = 5,100,000 g NH_3 \text{ or } 5100 \text{ kg } NH_3$$

b.

$$x g CH_4 = 450,000 \text{ mol } CH_4 \left(\frac{16 g CH_4}{1 \text{ mol } CH_4} \right) = 7,200,000 \text{ } g CH_4 \text{ } or \text{ } 7,200 \text{ } kg CH_4$$

3.

$$x \text{ mol} = 1,000,000 \text{ dm}^3 \left(\frac{1 \text{ mol gas}}{22.4 \text{ dm}^3} \right) = 44,643 \text{ mol gas (@STP)}$$

4.

$$x \text{ mol NH}_3 = 15,000 \text{ mol CH}_4 \left(\frac{2 \text{ mol NH}_3}{3 \text{ mol CH}_4} \right) = 10,000 \text{ mol NH}_3$$

5a.

x molecules NH₃ = 10,000 mol NH₃
$$\left(\frac{6.02 \times 10^{23} \text{ molecules NH}_3}{1 \text{ mol NH}_3}\right) = 6.02 \times 10^{27} \text{ molecules NH}_3$$

b.

$$x \ dm^3 = 10,000 \ mol \ NH_3 \ + \ 15,000 \ mol \ CH_4$$

$$x \ dm^3 = 25,000 \ mol \ "gas" \Bigg(\frac{22.4 \ dm^3}{1 \ mol \ gas} \Bigg) = 56,000 \ dm^3$$

c.

6.

$$x = 150,000 \text{ mol fertilizer} \left(\frac{\$1.75}{1 \text{ mol fertilizer}} \right) = \$2,625,000$$