$\begin{array}{lll} NH_4 \mbox{ $^{+1}$-ammonium} & \underline{POLY\ ATOMICS} \\ CO_3 \mbox{ $^{-2}$-carbonate} & H,O,Br,F,I,N,CI \\ CIO_3 \mbox{ $^{-1}$-chlorate} & P \mbox{ (4)} & S \mbox{ (8)} \\ \end{array}$

CN -1~cynaide
OH -1~hydoxide
NO₃ -1~nitrate
PO₄ -3~phosphate
SO₄ -2~sulfate

CONVERSIONS

1mL=1cm3 1L=1dm3 kilo=1000

hecto=100 P T V

deca=10 norm=1 deci=1/10 centi=1/100 milli=1/1000

REACTIONS

Single-replacement~ AB+C.AC+B(act.ser)
Double-replacement~ AB+CD>AD+CB
Combustion(hydroC)~ CH+O₂>CO₂+H₂O

<u>DRIVING FORCE:</u> (double-replacement) water, gas, precipitate(solid)

<u>ACTIVATION ENERGY:</u> amount of energy that must be overcome to produce a product

BALANCING

2 Sb + 3 Cl₂ > 2 SbCl₃ product=6(criss-cross) 2 Rb + 1 Cl₂ > 2 RbCl

 $2 \text{ Fe} + 3 \text{ H}_2\text{O} > 1 \text{ Fe}_2\text{O}_3 + 3 \text{ H}_2$

ISLAND DIAGRAM

<u>LIMITING REACTANT:</u> substance that limits max. amount product produced

~smaller # is limiting reactant

<u>ACTUAL YIELD:</u> experimentally found <u>THEORETICAL YIELD:</u> calculated

PERCENT YIELD: actual compared to theoretical

% yield = actual / theoretical

COMPOSITION OF ATMOSPHERE

Nitrogen=80% Oxygen=20% Carbon dioxide=.033% Argon=1%

IDEAL GAS LAW (USE W/ STOICHIOMETRY)

PV=nRT

P=pressure V=volume n=moles
R=constant T=temperature (kalvin)
R=0.0821 L*atm/mol*k R=8.314kPa*L/mol*k
PV/T=nR n=PV/RT R=PV/nT

KINETIC ENERGY

KE=1/2mv² m=mass v=velocity

K/C/KPA/ATM/MM HG CONVERSIONS

K=Kelvin C+273=K 760 mm Hg=101.3 kPa=1 atm

MANOMETER
Big = small + height

COMBINED GAS LAW Temp. in Kelvin

DENSITY OF GASES
Assume mass=1g

GRAHAM'S LAW

M=mass(amu) v= velocity

DALTON'S LAW PARTIAL PRESSURE

 $P_1V_1=P_2V_2$ total pressure=sum of partial

SOLUTION: solute dissolved in solvent (homogenous)

SUSPENSION: how ions are in solution, settle over time

ALLOY: homogenous mixture of 2 or more metals
AMALGAM: solvent is Hg (dental crown)
TINCTURE: solvent is alcohol (lodine(cuts))
AQUEOUS SOLUTION: solvent is water (universal solvent)
ORGANIC SOLUTION: solvent has Carbon (gas, benzene)

MOLARITY: relates moles of solute to liters of solution

MOLALITY: relates moles of solutes to kg of solvent

EMULSIFYING AGENTS/EMULSION

- Emulsion: polar and non-polar "mix"
- Agents: soap, detergent, lecithin, eggs

SOAP

~works: polar head (Na) and non-polar tail

~why need: body oil and dirt mix, water and oil no mix, soap has oil that attracts body oil, has polar head to attract water to rinse off

VITAMINS AND SOLUBILITY

Water- C

Fat- A,D (stored in fat)

DILUTIONS OF SOLUTIONS (USE W/ TITRATION)

 $M_1V_1=M_2V_2$ concentrated=dilute

COLLIGATIVE PROP: changing freezing/boiling point

Constant=C/molal

~freezing point: Tf= constant_(f)*molal

~boiling point: change temp=constant(b)*molal

~molar mass: grams/moles

ACID DISSOCIATION CONSTANT:

 K_a = products/reactants strong acid = larger #/breaks easy Coeffients- use as exponent weak acid= breaks little

<u>LECHATELIER'S PRINCIPLE:</u> any reaction at equilibrium when stressed by change in conc, temp, pressure will shift to relieve stress

- ~ pressure, shift
- ~ temp, shift
- ~add catalyst, no shift

PROP ACID/BASE

Acid: pH=<7,sour, litmus=red, gives protons ~monoprotic=give 1 proton(HCI), di=2(H₂NO₃),poly=more than 1(H₃PO₄)

Base: pH=>7, bitter, litmus=blue, accepts protons

COMMON ACID/BASE

~strong: hydrochloric(HCl)-stomach, clean metal sulfuric(H₂SO₄)-battery, top selling phosphoric(H₃PO₄)-food flavor nitric(HNO₃)-fertilizer, explosives

~weak: acetic(CH₃COOH)-vinegar hydrofluoric(HF)-etch glass

~base: calcium hydroxide(Ca(OH)₂) sodium hydroxide(NaOH) ammonium hydroxide(NH₄OH)

ACID/BASE CALCULATIONS

~pH + pOH = 14

 \sim pH = -log(H+) or 10-pH = H+

 \sim pOH = -log(OH-) or 10-pOH =OH-

 \sim (H+)(OH-) = 1*10⁻¹⁴

~water dissociation constant= 1*10-14

NORMALITY

H₂SO₄ 2 H⁺ +SO₄ 6M b/c there are 2 ions 3M 6M 3M of H (that's normality)

BUFFERS: chem's that resist change in pH ~manv in blood

<u>INDICATORS</u>: chem's that change color in acid or base ~litmus paper- acid=red, base=blue ~phenolphthalein- acid=clear, base=pink

MEASURING pH

- · Litmus/phenolphthalein-tell acid or base
- pH paper- measures pH 0-14
- universal indicator- measures pH 4-10 R O Y G B I V
- pH meter- measures small voltages in solution and is calibrated to convert voltages to pH, precise

PARTS NUCLEAR REACTOR

- ~CONTROL RODS- absorbs neutrons to regulate power level
- ~CONTAINMENT SHELL- concrete shell helps hold in radiation if leak in plant
- ~MODERATOR- substance used to help slow down neutrons

DECAY

ALPHA: Ra Rn + He (a) BETA: C N + B

NEUTRON: H+ H He+ n

MOLARITY/pH/STOICHOMETRY

~LiOH (0.956 L, 5.8*10⁻⁵ M) added to H2SO4 (0.0023g,

7.38L). find the pH.

1. LiOH Li + OH H₂SO₄ 2 H + SO₄

0.956 L 0.0023g 5.8*10⁻⁵ M 7.38 L 2.0.0023g()=2.3*10⁻⁵ mol H₂SO₄

3. 5.8*10⁻⁵ M=X mol/0.956 L=5.5*10⁻⁵mol LiOH

 $4.\ 5.5^{*}10^{-5}mol\ -\ 2.3^{*}10^{-5}\ mol = 3.1979^{*}10^{-5}mol$

5. 0.956 L + 7.38 L=8.336 L

6. X M=3.1979*10⁻⁵mol/8.336 L= 3.836*10⁻⁶M OH

7. 1*10⁻¹⁴/3.836*10⁻⁶M=2.6067*10⁻⁹M H*

8. pH= -log(2.6067*10⁻⁹M) pH=8.58

<u>ALPHA PARTICLE:</u> stopped by piece paper, positive charge <u>BETA PARTICLE:</u> stopped by heavy clothes/wood, neg. charge

<u>GAMMA RAYS:</u> stopped by concrete, no charge NEUTRON:

MASS DEFECT: amount that mass of nucleus is less than sum of particle masses

~proton- 1.007276 multiply #'s by p,n,e – add all together- subtract from mass

~electron- 0.0005486 of nucleus (amu)

BINDING ENERGY: energy required to decompose a

nucleus into component nucleons

~mass defect (1.6605*10⁻²⁷kg)(3*10⁸m/s)² answer in J

MASS DEFECT PER NUCLEON

~binding energy/mass of sum of nucleons

~answer in J/nucleon

<u>HALF LIFE:</u> time required for # of nuclides in radioactive sample to reach ½ original #

1- meth

~original # = remaining/ # of ½ lives

FUNCTIONAL GROUPS

alcohol (-ol) 2- eth
aldehyde (-al) 3- prop
ketone (-one) 4- but
ether (R-oxy-R) 5- pent
carboxyl (-ic acid) 6- hex
ester (-oate) 7- hept
amide (-amide) 8- oct

amine (-amine) 9- non 10-dec

FORMULAS

- ~alkane= CnH(2n+2)
- ~alkene= CnH(2n)
- ~alkyne= CnH(2n-2)
- ~alkadiene= CnH(2n-2)