Name:		
Hour:	 Date:	

Chemistry: Review Problems for the Gas Laws

Do the following problems, showing your work and including all proper units.

Graham's Law

- 1. At 350°C, nitrogen has a velocity of 800 m/s. Find the velocity of helium at the same temperature.
- 2. At room temperature, acetylene (C₂H₂) has a velocity of 480 m/s. At the same temperature, an unknown noble gas has a velocity of 267 m/s. What is the unknown gas?

Gas Laws with One Term Constant

- 3. A sample of gas has an initial volume of 25 L and an initial pressure of 3.5 atm. If the pressure changes to 1.3 atm, find the new volume, assuming that the temperature remains constant.
- 4. A sample of neon is at 89°C and 123 kPa. If the pressure changes to 145 kPa and the volume remains constant, find the new temperature, in °C.

Combined Gas Law

- 5. A gas at STP occupies 28 cm³ of space. If the pressure changes to 3.8 atm and the temperature increases to 203°C, find the new volume.
- A sample of sulfur dioxide (SO₂) is initially at a temperature of 133°C, a volume of 20 L, and a pressure of 850 mm Hg. If the volume changes to 25 L and the temperature increases to 181°C, find the new pressure.

Ideal Gas Law

7. 25 g of methane (CH₄) has a pressure of 4.44 atm at 250° C. Find the volume occupied by the gas.

- 8. A sample of gas has a volume of 5.0 L when at a temperature of 310 K and a pressure of 220 kPa.
 - a) Find the number of moles of gas.
 - b) If there are 56 g of the gas in the sample, which noble gas is it?

Gas Stoichiometry

- 11. a) Write a balanced chemical equation for the combustion of methane to form carbon dioxide and water.
 - b) If the methane has a volume of 0.65 L when under 100 kPa of pressure and at a temperature of 305 K, find the mass of oxygen that is needed to use up all of the methane.

Answers:

1.	2117 m/s
2.	mm ~ 84 g, Kr
3.	67 L
4.	154°C

12.8 cm³
760 mm Hg
15.1 L
0.43 moles

8b.	mm ~ 130 g, Xe
9.	154.6 kPa
10.	77.1 kPa
11b.	1.64 g O ₂