Chemistry: Chemical Equations

Write a balanced chemical equation for each word equation. Include the phase of each substance in the equation. Classify the reaction as synthesis, decomposition, single replacement, or double replacement.

1. Solid magnesium reacts with oxygen gas to yield solid magnesium oxide.
2. Solid aluminum reacts with a solution of lead (II) nitrate to yield solid lead and aqueous aluminum nitrate.
3. Solid diphosphorus pentoxide reacts with solid barium oxide to yield solid barium phosphate.
4. When heated, solid lead (IV) oxide breaks down into solid lead (II) oxide and oxygen gas.
5. A solution containing silver nitrate and potassium sulfate reacts to form a silver sulfate precipitate. The potassium nitrate that is formed remains in solution.
6. Solid sodium hydroxide decomposes into solid sodium oxide and liquid water.
7. Fluorine gas reacts with liquid water to form ozone gas and aqueous hydrofluoric acid.
8. Solid iron reacts with oxygen gas to yield solid iron (III) oxide.
9. Chlorine gas reacts with a solution of lithium iodide to form lithium chloride solution and iodine gas.
10. A solution of ammonium carbonate and lead (II) nitrate yields a solution of ammonium nitrate and a lead (II) carbonate precipitate.

Chemistry: Stoichiometry

Balance the equations; then solve the following problems. Assume that excess amounts of other reactants are available, unless otherwise specified.

1. If 20.0 g of magnesium react with excess hydrochloric acid, what mass of magnesium chloride is produced?

2. How many dm^{3} of chlorine gas are needed (at STP) if 10.0 g of sodium chloride must be produced?
$\ldots \quad \mathrm{NaI}(\mathrm{aq})+\ldots \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{NaCl}(\mathrm{aq})+\ldots \mathrm{I}_{2}(\mathrm{~g})$
3. If 30.0 g of calcium hydroxide react with ammonium sulfate, how many molecules of ammonia are produced?
$\ldots \quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})+\ldots \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \rightarrow \ldots \mathrm{CaSO}_{4}(\mathrm{~s})+\ldots \mathrm{NH}_{3}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
4. If 554 L of oxygen are consumed, how many kJ of energy are released?

$$
\ldots \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{CO}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2870 \mathrm{~kJ}
$$

5. If 36.5 g of hydrochloric acid and 73.0 g of zinc are put together...
A. ...write a balanced chemical equation for this reaction.
B. ...determine the limiting reactant.
C. ...find the maximum volume of hydrogen gas formed at STP.
D. ...determine the mass of excess reactant that is left over, if the reaction is 100% efficient.
E. ...find actual volume of hydrogen produced at STP if the percent yield is 91.6%.

Chemistry: Phase Changes and Calorimetry

Solve each of the problems below. You may need to use some of the information given in the table.

Acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$	$\mathrm{C}_{\mathrm{p}}=2.05 \mathrm{~J} /{ }^{\circ}{ }^{\circ} \mathrm{C}$		
Aluminum	$\mathrm{C}_{\mathrm{p}}=0.89 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$	$\mathrm{c}_{\mathrm{f}}=389 \mathrm{~J} / \mathrm{g}$	$\mathrm{c}_{\mathrm{v}}=10778 \mathrm{~J} / \mathrm{g}$
Chalk $\left(\mathrm{CaCO}_{3}\right)$	$\mathrm{C}_{\mathrm{p}}=0.920 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$		
Glass	$\mathrm{C}_{\mathrm{p}}=0.753 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$		
Gold	$\mathrm{C}_{\mathrm{p}}=0.128 \mathrm{~J} /{ }^{\circ} \mathrm{C}$	$\mathrm{c}_{\mathrm{f}}=65 \mathrm{~J} / \mathrm{g}$	$\mathrm{c}_{\mathrm{v}}=1742 \mathrm{~J} / \mathrm{g}$
Kerosene	$\mathrm{C}_{\mathrm{p}}=2.09 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$		
Toluene $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\right)$	$\mathrm{C}_{\mathrm{p}}=1.80 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$		

Find the change in energy when...

1. ... 14.2 g of water condense at $100^{\circ} \mathrm{C}$.
2.. .27 .3 g of aluminum freeze at $660^{\circ} \mathrm{C}$.
3.. .76 .4 g of gold melt at $1064^{\circ} \mathrm{C}$.
4.. .49 .2 g of acetic acid are heated from $24.1^{\circ} \mathrm{C}$ to $67.3^{\circ} \mathrm{C}$.
5.. .9 .61 g of toluene are heated from $19.6^{\circ} \mathrm{C}$ to $75.0^{\circ} \mathrm{C}$.
6.. .2 .47 g of kerosene are heated from $17.1^{\circ} \mathrm{C}$ to $46.7^{\circ} \mathrm{C}$.
7.. .31 .9 g of chalk are cooled from $83.2^{\circ} \mathrm{C}$ to $55.5^{\circ} \mathrm{C}$.
8.. .63 .6 g of glass are cooled from $95.5^{\circ} \mathrm{C}$ to $42.3^{\circ} \mathrm{C}$.
2. $\ldots 175 \mathrm{~g}$ of water are heated from $-11.0^{\circ} \mathrm{C}$ to $140.0^{\circ} \mathrm{C}$.
3. If 100.0 g of $27^{\circ} \mathrm{C}$ water are placed in an insulated flask, how many g of ice at $0^{\circ} \mathrm{C}$ must be added so that the final temperature is $5.0^{\circ} \mathrm{C}$?

Chemistry: The Gas Laws

Solve each of the problems below, showing your work and using proper units.

1. A sample of hydrogen has an initial volume of $75.0 \mathrm{~cm}^{3}$ and an initial temperature of $20.0^{\circ} \mathrm{C}$. If the temperature drops to $-10.0^{\circ} \mathrm{C}$ and the pressure remains constant, find the new volume.
2. A gas occupies $560.0 \mathrm{dm}^{3}$ of space at $120.0^{\circ} \mathrm{C}$. To what temperature (in ${ }^{\circ} \mathrm{C}$) must the gas be cooled for it to occupy $400.0 \mathrm{dm}^{3}$?
3. At $25.0^{\circ} \mathrm{C}$ and 121 kPa , find the volume occupied by a 183 g sample of chlorine.
4. At $58^{\circ} \mathrm{C}$ and an unknown pressure, a sample of oxygen has a volume of 433 mL . If the gas takes up 868 mL at STP, find the initial pressure, in atm.
5. At a certain temperature and pressure, chlorine molecules have an average velocity of $412 \mathrm{~m} / \mathrm{s}$. Find the average velocity of sulfur dioxide molecules under the same conditions.
6. Find the pressure of the confined gas, in mm Hg .
7. One sample of $X e$ in a 3.55 L container exerts a pressure of 6.2 atm . A second sample of Xe is confined into a 1.85 L container and exerts 2.4 atm of pressure. If these samples are placed together into a 9.75 L container, find the resulting pressure.
8. Propane burns according to the equation: $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

If the sample of propane occupies 22 L at $30^{\circ} \mathrm{C}$ and under 12 atm of pressure, how many grams of oxygen are needed to react with all of the propane?

Chemistry: Solutions

Solve each of the problems below, showing your work and using correct units.

1. Calculate the molarity of the following solutions.
A. 30.0 g of acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ in 825 mL of solution
B. 49.0 g of phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ in 2.05 L of solution
C. 0.375 kg of potassium hydroxide (KOH) in 4750 mL of solution
2. Calculate the number of liters of solution needed to make each of the following.
A. a 2.00 M solution using 80.0 g of sodium hydroxide (NaOH)
B. a 0.500 M solution using 56 g of ammonium hydroxide $\left(\mathrm{NH}_{4} \mathrm{OH}\right)$
C. a 6.00 M solution using 126 g of nitric acid $\left(\mathrm{HNO}_{3}\right)$
3. Calculate the mass of solute in the following solutions.
A. 250.0 mL of $2.00 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ solution
B. 1.500 L of $0.240 \mathrm{M} \mathrm{KH}_{2} \mathrm{PO}_{4}$ solution
C. $25,000 \mathrm{~mL}$ of 4.00 M HCl solution
4. What volume of $2.50 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ can be made from 4.00 L of $12.3 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$?
5. Given the balanced chemical equation: $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow 3 \mathrm{Cu}(\mathrm{s})+\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})$ What volume of $0.25 \mathrm{M} \mathrm{CuSO}_{4}$ is required to completely react with 125 g of aluminum?

Chemistry: Equilibrium

Answer each question below by writing SHIFT LEFT (or \leftarrow), SHIFT RIGHT (or \rightarrow), or NO SHIFT to indicate what happens to the equilibrium position when the indicated stress or condition change occurs.

1. For the balanced chemical equation: $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftarrow \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+$ energy remove $\mathrm{NH}_{3}(\mathrm{~g})$ \qquad decrease pressure
2. For the balanced chemical equation: $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})+$ energy $\leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ decrease temperature add a catalyst \qquad
3. For the balanced chemical equation: $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})+$ energy increase $\mathrm{SO}_{2}(\mathrm{~g})$ concentration increase temperature
4. For the balanced chemical equation:
$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s})+$ energy $\leftrightarrow 2 \mathrm{CO}(\mathrm{g})$ increase temperature \qquad increase CO concentration \qquad
5. For the balanced chemical equation:
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})+$ energy $\leftrightarrow \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
decrease pressure remove $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
\qquad
\qquad
6. For the balanced chemical equation: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{HCl}(\mathrm{g})+$ energy increase $\mathrm{H}_{2}(\mathrm{~g})$ concentration increase pressure
7. For the balanced chemical equation:
```
\(\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+\) energy \(\leftrightarrow \rightarrow 2 \mathrm{NO}(\mathrm{g})\)
``` decrease \(\mathrm{O}_{2}(\mathrm{~g})\) concentration \(\qquad\) add a catalyst \(\qquad\)
8. For the balanced equation: \(\mathrm{CO}_{2}(\mathrm{aq})+2 \mathrm{NH}_{3}(\mathrm{aq}) \leftrightarrow \mathrm{NH}_{2} \mathrm{CONH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\) energy remove \(\mathrm{NH}_{2} \mathrm{CONH}_{2}(\mathrm{aq})\) \(\qquad\)
increase \(\mathrm{CO}_{2}\) concentration \(\qquad\)
increase temperature \(\qquad\)
add a catalyst \(\qquad\)

\section*{Chemistry: Acids and Bases}

Solve each of the problems below, showing your work and using correct units.
1. Calculate the concentration of hydroxide ion in an aqueous solution in which the hydrogen ion concentration is \(2.42 \times 10^{-12} \mathrm{M}\). Then calculate the pH and pOH , and tell whether the solution is an acid or a base.
2. Find the hydronium ion concentration in a water solution in the hydroxide ion concentration is \(5.11 \times 10^{-8} \mathrm{M}\). Then calculate the pH and pOH , and tell whether the solution is an acid or a base.
3. Calculate the hydronium and hydroxide ion concentrations in a solution having a pH of 5.46 . Also find the pOH , and tell whether the solution is an acid or a base.
4. Calculate the concentration of a magnesium hydroxide solution, given that 99.3 mL of the basic solution is neutralized by 383.0 mL of a 0.325 M solution of nitric acid. Assume 100\% dissociation.
5. Calculate the number of milliliters of 0.540 M sulfuric acid required to neutralize 0.750 L of 0.283 M potassium hydroxide. Assume 100\% dissociation.
6. Find the pH of a solution consisting of 0.0023 g of \(\mathrm{H}_{2} \mathrm{SO}_{4}\) that is dissolved in 7.38 L of solution.
7. If 956 mL of \(5.8 \times 10^{-5} \mathrm{M}\) lithium hydroxide solution are added to the solution of Question 6 , find the new pH of the resulting mixture.

\section*{Chemistry: Final Exam Review Problems, Selected Answers}

\section*{Stoichiometry}
1. \(\quad 78.4 \mathrm{~g} \mathrm{MgCl}_{2}\)
2. \(\quad 1.91 \mathrm{dm}^{3} \mathrm{Cl}_{2}\)
3. \(4.87 \times 10^{23}\) m'cules \(\mathrm{NH}_{3}\)
4. \(\quad 1.18 \times 10^{4} \mathrm{~kJ}\)
5. B. HCl is LR
C. \(11.2 \mathrm{LH}_{2}\)
D. 40.3 g Zn
E. \(10.3 \mathrm{~L} \mathrm{H}_{2}\)

\section*{The Gas Laws}
1. \(\quad 67.3 \mathrm{~cm}^{3}\)
2. \(\quad 7.7^{\circ} \mathrm{C}\)
3. \(\quad 52.8 \mathrm{~L} \mathrm{Cl}_{2}\)
4. \(\quad 2.43 \mathrm{~atm}\)
5. \(\quad 434 \mathrm{~m} / \mathrm{s}\)
6.
7. 2.71 atm
8. \(\quad 1.7 \times 10^{3} \mathrm{~g} \mathrm{O}_{2}\)

\section*{Solutions}
1. A. 0.606 M
B. 0.244 M
C. 1.41 M
2. A. 1.00 L
B. 3.2 L
C. 0.333 L
3. A. 134 g
B. 49 g
C. 3650 g
4. \(\quad 19.7 \mathrm{~L}\)
5. \(\quad 27.8 \mathrm{~L}\)

\section*{Acids and Bases}
1. \(\left[\mathrm{OH}^{1-}\right]=4.13 \times 10^{-3} \mathrm{M}\)
\(\mathrm{pH}=11.62\)
\(\mathrm{pOH}=2.38\)
base
2. \(\left[\mathrm{H}_{3} \mathrm{O}^{1+}\right]=1.96 \times 10^{-7} \mathrm{M}\)
\(\mathrm{pH}=6.71\)
\(\mathrm{pOH}=7.29\)
acid
3. \(\left[\mathrm{H}_{3} \mathrm{O}^{1+}\right]=3.48 \times 10^{-6} \mathrm{M}\)
\(\left[\mathrm{OH}^{1-}\right]=2.88 \times 10^{-9} \mathrm{M}\)
\(\mathrm{pOH}=8.54\)
acid
4. \(\quad 0.627 \mathrm{M}\)
5. \(\quad 196.5 \mathrm{~mL}\)
\(6 . \quad 5.20\)
7. 8.01

\section*{Chemistry: Chemical Equations}

Write a balanced chemical equation for each word equation. Include the phase of each substance in the equation. Classify the reaction as synthesis, decomposition, single replacement, or double replacement.
1. Solid magnesium reacts with oxygen gas to yield solid magnesium oxide.
\[
2 \mathrm{Mg}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{~s})
\]

\section*{synthesis}
2. Solid aluminum reacts with a solution of lead (II) nitrate to yield solid lead and aqueous aluminum nitrate.
\[
2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow 3 \mathrm{~Pb}(\mathrm{~s})+2 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq}) \quad \text { single replacement }
\]
3. Solid diphosphorus pentoxide reacts with solid barium oxide to yield solid barium phosphate.
\[
\mathrm{P}_{2} \mathrm{O}_{5}(\mathrm{~s})+3 \mathrm{BaO}(\mathrm{~s}) \rightarrow \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s}) \quad \text { synthesis }
\]
4. When heated, solid lead (IV) oxide breaks down into solid lead (II) oxide and oxygen gas.
\[
2 \mathrm{PbO}_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{PbO}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \quad \text { decomposition }
\]
5. A solution containing silver nitrate and potassium sulfate reacts to form a silver sulfate precipitate. The potassium nitrate that is formed remains in solution.
\[
2 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Ag}_{2} \mathrm{SO}_{4}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq}) \quad \text { double replacement }
\]
6. Solid sodium hydroxide decomposes into solid sodium oxide and liquid water.
\[
2 \mathrm{NaOH}(\mathrm{~s}) \rightarrow \mathrm{Na}_{2} \mathrm{O}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \text { decomposition }
\]
7. Fluorine gas reacts with liquid water to form ozone gas and aqueous hydrofluoric acid.
\[
3 \mathrm{~F}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{O}_{3}(\mathrm{~g})+6 \mathrm{HF}(\mathrm{aq}) \quad \text { single replacement }
\]
8. Solid iron reacts with oxygen gas to yield solid iron (III) oxide.
\[
4 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})
\]

\section*{synthesis}
9. Chlorine gas reacts with a solution of lithium iodide to form lithium chloride solution and iodine gas.
\[
\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{Lil}(\mathrm{aq}) \rightarrow 2 \mathrm{LiCl}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{~g})
\]
```

single replacement

```
10. A solution of ammonium carbonate and lead (II) nitrate yields a solution of ammonium nitrate and a lead (II) carbonate precipitate.
\[
\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})+\mathrm{PbCO}_{3}(\mathrm{~s}) \quad \text { double replacement }
\]

\section*{Chemistry: Stoichiometry}

Balance the equations; then solve the following problems. Assume that excess amounts of other reactants are available, unless otherwise specified.
1. If 20.0 g of magnesium react with excess hydrochloric acid, what mass of magnesium chloride is produced?
\[
\left.\begin{array}{c}
-\mathbf{1}_{-} \mathrm{Mg}(\mathrm{~s})+\mathbf{2}_{-} \mathrm{HCl}(\mathrm{aq}) \rightarrow-\mathbf{1}_{-} \mathrm{MgCl}_{2}(\mathrm{~s})+\mathbf{1}_{-} \mathrm{H}_{2}(\mathrm{~g}) \\
X g \mathrm{MgCl}_{2}=20 \mathrm{~g} \mathrm{Mg}\left(\frac{1 \mathrm{~mol} \mathrm{Mg}}{24.3 \mathrm{~g} \mathrm{Mg}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{MgCl}}{2}\right. \\
1 \mathrm{~mol} \mathrm{Mg}
\end{array}\right)\left(\frac{95.3 g \mathrm{MgCl}_{2}}{1 \mathrm{~mol} \mathrm{MgCl}}\right)=78.4 g \mathrm{MgCl}_{2} .
\]
2. How many \(\mathrm{dm}^{3}\) of chlorine gas are needed (at STP) if 10.0 g of sodium chloride must be produced?
\[
\left.\begin{array}{c}
\mathbf{2}_{-} \mathrm{Nal}(\mathrm{aq})+_\mathbf{1} \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \quad \rightarrow \quad \mathbf{2} \mathrm{NaCl}(\mathrm{aq})+\quad+\mathbf{1}_{-} \mathrm{l}_{2}(\mathrm{~g}) \\
X \mathrm{dm}^{3} \mathrm{Cl}_{2}=10 \mathrm{~g} \mathrm{NaCl}\left(\frac{1 \mathrm{~mol} \mathrm{NaCl}}{58.5 \mathrm{~g} \mathrm{NaCl}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Cl}}{2}\right. \\
2 \mathrm{~mol} \mathrm{NaCl}
\end{array}\right)\left(\frac{22.4 \mathrm{dm}^{3} \mathrm{Cl}_{2}}{1 \mathrm{~mol} \mathrm{Cl}_{2}}\right)=1.91 \mathrm{dm}^{3} \mathrm{Cl}_{2}
\]
3. If 30.0 g of calcium hydroxide react with ammonium sulfate, how many molecules of ammonia are produced?
\[
\mathbf{1}_{-}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathbf{1}_{-} \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \rightarrow \mathbf{1}_{-} \mathrm{CaSO}_{4}(\mathrm{~s}) \quad+\quad \mathbf{2}_{-} \mathrm{NH}_{3}(\mathrm{~g}) \quad+\quad \mathbf{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\]
\(\mathrm{X} \mathrm{m}^{\prime} c \mathrm{NH}_{3}=30 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}\left(\frac{1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}{74.1 \mathrm{~g} \mathrm{Ca(OH)}_{2}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{1 \mathrm{molCa}(\mathrm{OH})_{2}}\right)\left(\frac{6.02 \times 10^{23} \mathrm{~m}^{\prime} \mathrm{c} \mathrm{NH}}{3}\right)=4.87 \times 10^{23} \mathrm{~m}^{\prime} c \mathrm{NH}_{3}\)
4. If 554 L of oxygen are consumed, how many kJ of energy are released?
\[
\begin{gathered}
\mathbf{1}_{-} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+\mathbf{O}_{-} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow-6 \mathrm{CO}_{2}(\mathrm{~g})+\mathbf{b}_{-} \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+2870 \mathrm{~kJ} \\
X k J=554 \mathrm{LO}_{2}\left(\frac{1 m o l O_{2}}{22.4 L \mathrm{O}_{2}}\right)\left(\frac{2870 \mathrm{~kJ}}{6 m o l O_{2}}\right)=1.18 \times 10^{4} \mathrm{~kJ}
\end{gathered}
\]
5. If 36.5 g of hydrochloric acid and 73.0 g of zinc are put together...
A. ...write a balanced chemical equation for this reaction.
\[
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Zn}(\mathrm{~s}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
\]
B. ...determine the limiting reactant.
\[
\begin{aligned}
& X \mathrm{~mol} \mathrm{HCl}=36.5 \mathrm{~g} \mathrm{HCl}\left(\frac{1 \mathrm{~mol} \mathrm{HCl}}{36.5 \mathrm{~g} \mathrm{HCl}}\right)=1.0 \mathrm{~mol} \mathrm{HCl} \\
& \mathrm{X} \text { wol } \mathrm{Zn}=73.0 \mathrm{~g} \mathrm{Zn}\left(\frac{1 \mathrm{~mol} \mathrm{Zn}}{65.4 \mathrm{~g} \mathrm{Zn}}\right)=1.116 \mathrm{~mol} \mathrm{Zn}
\end{aligned}
\]
C. ...find the maximum volume of hydrogen gas formed at STP.
\[
X \mathrm{LH}_{2}=1 \mathrm{~mol} \mathrm{HCl}\left(\frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2 \mathrm{~mol} \mathrm{HCl}}\right)\left(\frac{22.4 \mathrm{LH}_{2}}{1 \mathrm{~mol} \mathrm{H}_{2}}\right)=11.2 \mathrm{LH}_{2}
\]
D. ...determine the mass of excess reactant that is left over, if the reaction is \(100 \%\) efficient.

Have \(\mathbf{1 . 1 1 6 ~ \mathrm { mol }} \mathrm{Zn}\), use up 0.5 mol Zn
\[
X g Z n=0.616 \mathrm{~mol} Z n\left(\frac{65.4 \mathrm{~g} \mathrm{Zn}}{1 \mathrm{~mol} Z n}\right)=40.3 \mathrm{~g} \mathrm{Zn}
\]
0.616 mol Zn is left over; convert to grams
E. ...find actual volume of hydrogen produced at STP if the percent yield is \(91.6 \%\).
\[
X L H_{2}=0.916 \overleftrightarrow{ } 1.2 L H_{2}=10.3 L H_{2}
\]

\section*{Chemistry: Phase Changes and Calorimetry}

Solve each of the problems below. You may need to use some of the information given in the table.
\begin{tabular}{llll|}
\hline Acetic acid \(\left(\mathrm{CH}_{3} \mathrm{COOH}\right)\) & \(\mathrm{c}_{\mathrm{p}}=2.05 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\) & & \\
Aluminum & \(\mathrm{c}_{\mathrm{p}}=0.89 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\) & \(\mathrm{c}_{\mathrm{f}}=389 \mathrm{~J} / \mathrm{g}\) & \(\mathrm{c}_{\mathrm{v}}=10778 \mathrm{~J} / \mathrm{g}\) \\
Chalk \(\left(\mathrm{CaCO}_{3}\right)\) & \(\mathrm{c}_{\mathrm{p}}=0.920 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\) & & \\
Glass & \(\mathrm{C}_{\mathrm{p}}=0.753 \mathrm{~J} / \mathrm{o}^{\circ} \mathrm{C}\) & & \\
Gold & \(\mathrm{c}_{\mathrm{p}}=0.128 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\) & \(\mathrm{c}_{\mathrm{f}}=65 \mathrm{~J} / \mathrm{g}\) & \(\mathrm{c}_{\mathrm{v}}=1742 \mathrm{~J} / \mathrm{g}\) \\
Kerosene & \(\mathrm{c}_{\mathrm{p}}=2.09 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\) & & \\
Toluene \(\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\right)\) & \(\mathrm{C}_{\mathrm{p}}=1.80 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\) & & \\
\hline
\end{tabular}

Find the change in energy when...
1. ... 14.2 g of water condense at \(100^{\circ} \mathrm{C}\).
2. \(\ldots 27.3 \mathrm{~g}\) of aluminum freeze at \(660^{\circ} \mathrm{C}\).
3. ...76.4 g of gold melt at \(1064^{\circ} \mathrm{C}\).
4. ...49.2 g of acetic acid are heated from \(24.1^{\circ} \mathrm{C}\) to \(67.3^{\circ} \mathrm{C}\).
5. .. 9.61 g of toluene are heated from \(19.6^{\circ} \mathrm{C}\) to \(75.0^{\circ} \mathrm{C}\).
6. ... 2.47 g of kerosene are heated from \(17.1^{\circ} \mathrm{C}\) to \(46.7^{\circ} \mathrm{C}\).
7.. .31 .9 g of chalk are cooled from \(83.2^{\circ} \mathrm{C}\) to \(55.5^{\circ} \mathrm{C}\).
8. ... 63.6 g of glass are cooled from \(95.5^{\circ} \mathrm{C}\) to \(42.3^{\circ} \mathrm{C}\).
9. \(\ldots 175 \mathrm{~g}\) of water are heated from \(-11.0^{\circ} \mathrm{C}\) to \(140.0^{\circ} \mathrm{C}\).
10. If 100.0 g of \(27^{\circ} \mathrm{C}\) water are placed in an insulated flask, how many g of ice at \(0^{\circ} \mathrm{C}\) must be added so that the final temperature is \(5.0^{\circ} \mathrm{C}\) ?

\section*{Chemistry: The Gas Laws}

Solve each of the problems below, showing your work and using proper units.
1. A sample of hydrogen has an initial volume of \(75.0 \mathrm{~cm}^{3}\) and an initial temperature of \(20.0^{\circ} \mathrm{C}\). If the temperature drops to \(-10.0^{\circ} \mathrm{C}\) and the pressure remains constant, find the new volume.
\[
\frac{75 \mathrm{~cm}^{3}}{293 \mathrm{~K}}=\frac{V_{2}}{263 \mathrm{~K}} \rightarrow V_{2}=67.3 \mathrm{~cm}^{3}
\]
2. A gas occupies \(560.0 \mathrm{dm}^{3}\) of space at \(120.0^{\circ} \mathrm{C}\). To what temperature (in \({ }^{\circ} \mathrm{C}\)) must the gas be cooled for it to occupy \(400.0 \mathrm{dm}^{3}\) ?
\[
\frac{560 \mathrm{dm}^{3}}{393 \mathrm{~K}}=\frac{400 \mathrm{dm}^{3}}{T_{2}} \rightarrow T_{2}=280.7 \mathrm{~K}=7.7^{\circ} \mathrm{C}
\]
3. At \(25.0^{\circ} \mathrm{C}\) and 121 kPa , find the volume occupied by a 183 g sample of chlorine.
\[
121 \mathrm{kPa} \equiv\left[183 \mathrm{~g}\left(\frac{1 \mathrm{molCl}_{2}}{71.0 \mathrm{gCl} l_{2}}\right)\right]\left(8.314 \frac{\mathrm{~L}-\mathrm{kPa}}{\mathrm{~mol}-\mathrm{K}}\right)<98 \mathrm{~K}_{\mathrm{J}} \rightarrow 52.8 \mathrm{LCl}_{2}
\]
4. At \(58^{\circ} \mathrm{C}\) and an unknown pressure, a sample of oxygen has a volume of 433 mL . If the gas takes up 868 mL at STP, find the initial pressure, in atm.
\[
\frac{P_{1} ₫ 33 \mathrm{~mL}}{331 \mathrm{~K}}=\frac{1 \mathrm{~atm} 68 \mathrm{~mL}}{273 \mathrm{~K}} \rightarrow P_{1}=2.43 \mathrm{~atm}
\]
5. At a certain temperature and pressure, chlorine molecules have an average velocity of \(412 \mathrm{~m} / \mathrm{s}\). Find the average velocity of sulfur dioxide molecules under the same conditions.
\[
\frac{v_{S O 2}}{412 \mathrm{~m} / \mathrm{s}}=\sqrt{\frac{71 g}{64.1 g}} \rightarrow v_{S O 2}=434 \mathrm{~m} / \mathrm{s}
\]
6. Find the pressure of the confined gas, in mm Hg .
\[
98.6 \mathrm{kPa}\left(\frac{760 \mathrm{~mm} \mathrm{Hg}}{101.3 \mathrm{kPa}}\right)+182 \mathrm{~mm} \mathrm{Hg}=922 \mathrm{~mm} \mathrm{Hg}
\]
7. One sample of Xe in a 3.55 L container exerts a pressure of 6.2 atm . A second sample of Xe is confined into a 1.85 L container and exerts 2.4 atm of pressure. If these samples are placed together into a 9.75 L container, find the resulting pressure.
\[
\frac{6.2 \mathrm{~atm} \backslash .55 L^{-}}{9.75 \mathrm{~L}}+\frac{2.4 \mathrm{~atm} \backslash .85 L^{-}}{9.75 \mathrm{~L}}=P_{z} \rightarrow P_{z}=2.71 \mathrm{~atm}
\]
8. Propane burns according to the equation: \(\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})\)

If the sample of propane occupies 22 L at \(30^{\circ} \mathrm{C}\) and under 12 atm of pressure, how many grams of oxygen are needed to react with all of the propane?
\[
\begin{aligned}
& 12 \mathrm{~atm}\left(2 L _ { \gamma } \equiv n \left(.0821 \mathrm{~L} \bullet \mathrm{~atm} / \mathrm{mol} \bullet K \bigcirc 03 \mathrm{~K}, \rightarrow n=10.6 \mathrm{~mol}_{3} \mathrm{H}_{8}\right.\right. \\
& X \mathrm{~g} \mathrm{O}_{2}=10.6 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}\left(\frac{5 \mathrm{~mol} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}}\right)\left(\frac{32 \mathrm{~g} \mathrm{O}_{2}}{1 \mathrm{molO}_{2}}\right)=1.7 \times 10^{3} \mathrm{~g} \mathrm{O}_{2}
\end{aligned}
\]

\section*{Chemistry: Solutions}

Solve each of the problems below, showing your work and using correct units.
1. Calculate the molarity of the following solutions.
A. 30.0 g of acetic acid \(\left(\mathrm{CH}_{3} \mathrm{COOH}\right)\) in 825 mL of solution
\[
X \mathrm{~mol}=30 \mathrm{~g}\left(\frac{1 \mathrm{~mol}}{60 \mathrm{~g}}\right)=0.5 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COOH} \rightarrow M=\frac{0.5 \mathrm{~mol}}{0.825 \mathrm{~L}}=0.606 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}
\]
B. 49.0 g of phosphoric acid \(\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)\) in 2.05 L of solution
\[
X \mathrm{~mol}=49 \mathrm{~g}\left(\frac{1 \mathrm{~mol}}{98 \mathrm{~g}}\right)=0.5 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow M=\frac{0.5 \mathrm{~mol}}{2.05 \mathrm{~L}}=0.244 \mathrm{M} \mathrm{H}_{3} P O_{4}
\]
C. 0.375 kg of potassium hydroxide (KOH) in 4750 mL of solution
\[
X \mathrm{~mol}=375 \mathrm{~g}\left(\frac{1 \mathrm{~mol}}{56.1 \mathrm{~g}}\right)=6.6845 \mathrm{~mol} \mathrm{KOH} \rightarrow M=\frac{6.6845 \mathrm{~mol}}{4.750 \mathrm{~L}}=1.41 \mathrm{M} \mathrm{KOH}
\]
2. Calculate the number of liters of solution needed to make each of the following.
A. a 2.00 M solution using 80.0 g of sodium hydroxide \((\mathrm{NaOH})\)
\[
X \mathrm{~mol}=80 \mathrm{~g}\left(\frac{1 \mathrm{~mol}}{40 \mathrm{~g}}\right)=2.0 \mathrm{~mol} \mathrm{NaOH} \rightarrow 2.00 \mathrm{M}=\frac{2.0 \mathrm{~mol}}{X L} \rightarrow X L=1.00 \mathrm{~L}
\]
B. a 0.500 M solution using 56 g of ammonium hydroxide \(\left(\mathrm{NH}_{4} \mathrm{OH}\right)\)
\[
X \mathrm{~mol}=56 \mathrm{~g}\left(\frac{1 \mathrm{~mol}}{35 \mathrm{~g}}\right)=1.6 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{OH} \rightarrow 0.500 \mathrm{M}=\frac{1.6 \mathrm{~mol}}{X L} \rightarrow X L=3.2 L
\]
C. a 6.00 M solution using 126 g of nitric acid \(\left(\mathrm{HNO}_{3}\right)\)
\[
X \mathrm{~mol}=126 \mathrm{~g}\left(\frac{1 \mathrm{~mol}}{63 \mathrm{~g}}\right)=2.0 \mathrm{~mol} \mathrm{HNO}_{3} \rightarrow 6.00 \mathrm{M}=\frac{2.0 \mathrm{~mol}}{X L} \rightarrow X L=0.333 \mathrm{~L}
\]
3. Calculate the mass of solute in the following solutions.
A. 250.0 mL of \(2.00 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4} 7 \mathrm{H}_{2} \mathrm{O}\) solution
\[
X \mathrm{~mol}=2 \mathrm{M} .25 L_{=}=0.5 \mathrm{~mol} \rightarrow X \mathrm{~g}=0.5 \mathrm{~mol}\left(\frac{268.1 \mathrm{~g}}{1 \mathrm{~mol}}\right)=134 \mathrm{~g} \mathrm{Na} \mathrm{~N}_{2} \mathrm{SO}_{4} \bullet 7 \mathrm{H}_{2} \mathrm{O}
\]
B. 1.500 L of \(0.240 \mathrm{M} \mathrm{KH}_{2} \mathrm{PO}_{4}\) solution
\[
X \mathrm{~mol}=0.24 M \varangle .5 L_{\bar{\prime}}^{`}=0.36 \mathrm{~mol} \rightarrow X \mathrm{~g}=0.36 \mathrm{~mol}\left(\frac{136.1 \mathrm{~g}}{1 \mathrm{~mol}}\right)=49 \mathrm{~g} \mathrm{KH}{ }_{2} P O_{4}
\]
C. \(25,000 \mathrm{~mL}\) of 4.00 M HCl solution
\[
X \mathrm{~mol}=4.0 \mathrm{M}<5 \mathrm{~L}_{\bar{\prime}}=100 \mathrm{~mol} \rightarrow X \mathrm{~g}=100 \mathrm{~mol}\left(\frac{36.5 \mathrm{~g}}{1 \mathrm{~mol}}\right)=3650 \mathrm{~g} \mathrm{HCl}
\]
4. What volume of \(2.50 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}\) can be made from 4.00 L of \(12.3 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}\) ?
\[
12.3 M \triangleleft L \equiv 2.50 M \mathbb{U}_{\text {dilute }} 〕 \rightarrow V_{\text {dilute }}=19.7 L
\]
5. Given the balanced chemical equation: \(2 \mathrm{Al}(\mathrm{s})+3 \mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow 3 \mathrm{Cu}(\mathrm{s})+\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})\)

What volume of \(0.25 \mathrm{M} \mathrm{CuSO}_{4}\) is required to completely react with 125 g of aluminum?
\[
\begin{gathered}
\mathrm{X} \mathrm{~mol} \mathrm{CuSO}_{4}=125 \mathrm{~g} \mathrm{Al}\left(\frac{1 \mathrm{~mol} \mathrm{Al}}{27 \mathrm{~g} \mathrm{Al}}\right)\left(\frac{3 \mathrm{~mol} \mathrm{CuSO}_{4}}{2 \mathrm{~mol} \mathrm{Al}}\right)=6.94 \mathrm{~mol} \mathrm{CuSO}_{4} \\
0.25 M=6.94 \mathrm{~mol} / X \mathrm{~L} \rightarrow X L=27.8 \mathrm{~L}
\end{gathered}
\]

\section*{Chemistry: Equilibrium}

Answer each question below by writing SHIFT LEFT (or \(\leftarrow\)), SHIFT RIGHT (or \(\rightarrow\)), or NO SHIFT to indicate what happens to the equilibrium position when the indicated stress or condition change occurs.
1. For the balanced chemical equation: \(\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+\) energy
remove \(\mathrm{NH}_{3}(\mathrm{~g})\) decrease pressure
2. For the balanced chemical equation: decrease temperature add a catalyst
3. For the balanced chemical equation: increase \(\mathrm{SO}_{2}(\mathrm{~g})\) concentration increase temperature
4. For the balanced chemical equation: increase temperature increase CO concentration
5. For the balanced chemical equation: decrease pressure remove \(\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})\)
6. For the balanced chemical equation: increase \(\mathrm{H}_{2}(\mathrm{~g})\) concentration increase pressure
7. For the balanced chemical equation: decrease \(\mathrm{O}_{2}(\mathrm{~g})\) concentration add a catalyst
8. For the balanced equation: \(\mathrm{CO}_{2}(\mathrm{aq})+2 \mathrm{NH}_{3}(\mathrm{aq}) \leftrightarrow \rightarrow \mathrm{NH}_{2} \mathrm{CONH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\) energy remove \(\mathrm{NH}_{2} \mathrm{CONH}_{2}(\mathrm{aq})\)
increase \(\mathrm{CO}_{2}\) concentration
increase temperature add a catalyst

NO SHIFT
SHIFT RIGHT
SHIFT LEFT
\(\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})+\) energy \(\leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\)
SHIFT LEFT
NO SHIFT
\(2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})+\) energy
SHIFT RIGHT
SHIFT LEFT
\(\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s})+\) energy \(\leftrightarrow \rightarrow 2 \mathrm{CO}(\mathrm{g})\)
SHIFT RIGHT
SHIFT LEFT
\(\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})+\) energy \(\leftrightarrow \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})\)
SHIFT RIGHT
SHIFT LEFT
\(\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrow \rightarrow 2 \mathrm{HCl}(\mathrm{g})+\) energy
\(\qquad\)
SHIFT RIGHT
\(\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+\) energy \(\leftrightarrow \rightarrow 2 \mathrm{NO}(\mathrm{g})\)
SHIFT LEFT
NO SHIFT

\section*{SHIFT RIGHT}

SHIFT RIGHT
SHIFT LEFT
NO SHIFT

\section*{Chemistry: Acids and Bases}

Solve each of the problems below, showing your work and using correct units.
1. Calculate the concentration of hydroxide ion in an aqueous solution in which the hydrogen ion concentration is \(2.42 \times 10^{-12} \mathrm{M}\). Then calculate the pH and pOH , and tell whether the solution is an acid or a base.
\[
\begin{aligned}
& 2.42 \times 10^{-12} \mathrm{M} H^{1-}=1 \times 10^{-14} \rightarrow \mathrm{P} H^{1-}=4.13 \times 10^{-3} \mathrm{M} \\
& \mathrm{pH}=-\log \cdot 42 \times 10^{-12}=11.62 \\
& \mathrm{pOH}=2.38
\end{aligned}
\]

\section*{BASE}
2. Find the hydronium ion concentration in a water solution in the hydroxide ion concentration is \(5.11 \times 10^{-8} \mathrm{M}\).

Then calculate the pH and pOH , and tell whether the solution is an acid or a base.
\[
\begin{aligned}
& \mathrm{H}_{3} \mathrm{O}^{1+}-\overline{5} \cdot 11 \times 10^{-8} \mathrm{M}=1 \times 10^{-14} \rightarrow \mathrm{H}_{3} \mathrm{O}^{1+}=1.96 \times 10^{-7} \mathrm{M} \\
& \mathrm{pH}=-\log \downarrow .96 \times 10^{-7}=6.71 \\
& \mathrm{pOH}=7.29
\end{aligned}
\]
ACID
3. Calculate the hydronium and hydroxide ion concentrations in a solution having a pH of 5.46. Also find the pOH , and tell whether the solution is an acid or a base.
\[
\begin{aligned}
& \mathrm{H}_{3} \mathrm{O}^{1+}=10^{-5.46}=3.48 \times 10^{-6} \mathrm{M} \\
& \mathrm{pOH}=8.54 \\
& \mathrm{PH}^{1-}=10^{-8.54}=2.88 \times 10^{-9} \mathrm{M}
\end{aligned}
\]

\section*{ACID}
4. Calculate the concentration of a magnesium hydroxide solution, given that 99.3 mL of the basic solution is neutralized by 383.0 mL of a 0.325 M solution of nitric acid. Assume \(100 \%\) dissociation \({ }_{i-}\)
\[
\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{OH}^{1-} \quad \text { AND } \quad \mathrm{HNO}_{3} \rightarrow \mathrm{H}^{1+}+\mathrm{NO}_{3}{ }^{i-}
\]
5. Calculate the number of milliliters of 0.540 M sulfuric acid required to neutralize 0.750 L of 0.283 M potassium hydroxide. Assume 100\% dissociation.
\[
\begin{aligned}
& \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{H}^{1+}+\mathrm{SO}_{4}{ }^{2-} \quad \text { AND } \quad \mathrm{KOH} \rightarrow \mathbf{K}^{1+}+\mathrm{OH}^{1-} \\
& 1.08 M 《 L_{=}^{-} \mid 283 M_{-}^{-} 0.750 L_{,}^{-} \rightarrow X L=0.1965 L=196.5 m L
\end{aligned}
\]
6. Find the pH of a solution consisting of \(0.0023 \mathrm{~g} \mathrm{of}_{2} \mathrm{SO}_{4}\) that is dissolved in 7.38 L of solution.
\[
\begin{gathered}
X \mathrm{~mol}=0.0023 \mathrm{~g}\left(\frac{1 \mathrm{~mol}}{98.1 \mathrm{~g}}\right)=2.34 \times 10^{-5} \mathrm{~mol} \rightarrow M=\frac{2.34 \times 10^{-5} \mathrm{~mol}}{7.38 \mathrm{~L}}=3.177 \times 10^{-6} \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4} \\
\mathrm{I}^{1+}=6.354 \times 10^{-6} \mathrm{M} \rightarrow \mathrm{pH}=-\log \$ 354 \times 10^{-6}=5.20
\end{gathered}
\]
7. If 956 mL of \(5.8 \times 10^{-5} \mathrm{M}\) lithium hydroxide solution are added to the solution of Question 6 , find the new pH of the resulting mixture.
\[
\begin{aligned}
& 2.34 \times 10^{-5} \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 4.68 \times 10^{-5} \mathrm{~mol} \mathrm{H}^{1+} \\
& \mathrm{X} \mathrm{~mol} \mathrm{LiOH}=5.8 \times 10^{-5} \mathrm{M} \boxtimes .956 \mathrm{~L}_{=}^{-}=5.54 \times 10^{-5} \mathrm{~mol} \mathrm{LiOH} \rightarrow 5.54 \times 10^{-5} \mathrm{~mol} \mathrm{OH}^{1-}
\end{aligned}
\]

EXTRA OH \({ }^{1-} \rightarrow \quad 8.56 \times 10^{-6} \mathrm{~mol} \mathrm{OH}{ }^{1-} \rightarrow \$ H^{1-}=\frac{8.56 \times 10^{-6} \mathrm{~mol}}{8.336 \mathrm{~L}}=1.03 \times 10^{-6} \mathrm{M} \mathrm{PH}^{1^{-}}\)-
\[
p O H=-\log \| .03 \times 10^{-6}=5.99
\]
\[
p H=8.01
\]
\[
\begin{aligned}
& \boldsymbol{M g} \text { (} H_{2}^{-}=0.627 \mathrm{M}
\end{aligned}
\]```

