| Name: |
 | | |-------|-----------|--| | Hour: |
Date: | | ## Chemistry: Quantitative Relationships in Chemical Equations When we balance a chemical equation, we are satisfying the law of conservation of mass; that is, we are making sure that there are the same number of atoms of each element on both sides of the equation. The coefficients we place in front of the substances in an equation are very important because they tell us the mole ratio of the substances in that reaction. For instance, the balanced equation... $$2 H_2(g) + O_2(g) \rightarrow 2 H_2O(l)$$ can be thought of in terms of... 2 moles $$H_2(g) + 1$$ mole $O_2(g) \rightarrow 2$ moles $H_2O(I)$ ## **Directions:** - A. Balance each equation. - B. Solve the problems, assuming that you have excess of the other reactant(s). 1. Ca(s) + ____ $$N_2(g) \rightarrow$$ ____ $Ca_3N_2(s)$ - a. How many moles of Ca₃N₂ can be made from 16.8 moles of Ca? - b. If you need to make 34.4 moles of Ca₃N₂, how many moles of N₂ will you need? 2. Fe(s) + ____ $$O_2(g) \rightarrow$$ ____ Fe₃ $O_4(s)$ - a. How many moles of O₂ will react with 42.5 moles of Fe? - b. If you need to make 1.56 moles of Fe₃O₄, how many moles of Fe will you need? 3. ____ FeCl₂(aq) + ____ KOH(aq) $$\rightarrow$$ ____ Fe(OH)₂(s) + ___ KCI(aq) - a. How many moles of KOH will react with 86.2 moles of FeCl₂? - b. If you need to make 12.4 moles of KCl, how many moles of FeCl₂ will you need? - 4. $__Cu(s) + __O_2(g) \rightarrow __Cu_2O(s)$ - a. How many moles of Cu₂O can be made from 25.6 moles of Cu? - b. How many moles of O₂ does it take to produce 214 moles of Cu₂O? - 5. (S) + (- a. How many moles of KCIO₃ can be made from 89 moles of O₂? - b. If you have 24.6 moles of Cl₂, how many moles of KClO₃ can you produce? - 6. $MH_3(g) + MH_2S(g) \rightarrow MH_4)_2S(s)$ - a. How many moles of (NH₄)₂S can be made from 15.8 moles of NH₃? - b. If you have 462 moles of NH₃, how many moles of H₂S do you need? - 7. $Al_2O_3(s) + ___ H_2SO_4(aq) \rightarrow ___ Al_2(SO_4)_3(aq) + ___ H_2O(l)$ - a. How many moles of $Al_2(SO_4)_3$ can be made from 6.3 moles of H_2SO_4 ? - b. How many moles of Al₂O₃ does it take to make 7.2 moles of H₂O? - c. If you have 588 moles of Al₂O₃, how many moles of Al₂(SO₄)₃ can you produce?