Lesson: Weak Acids (pK_a)

Weak Acids – dissociate incompletely (~20%)

Strong Acids – dissociate completely (~100%)

$$A_{(g)} + 2 B_{(g)} \longrightarrow 3 C_{(g)} + D_{(g)}$$

Equilibrium constant (K_{eq}) =
$$\frac{[Products]}{[Reactants]}$$
 K_{eq} = $\frac{[C]^3[D]}{[A][B]^2}$ LeChatelier's (lu-SHAT-el-YAY's)

Example Problems: Pg 521 (black book) & pg 519 (transparency)

IONIZATION CONSTANTS for ACIDS

$$HC_2H_3O_{2(aq)} \stackrel{\longrightarrow}{\longleftarrow} H^+_{(aq)} + C_2H_3O_2^{1-}_{(aq)}$$

Equilibrium constant	$K_{eq} = \frac{[H^+][C_2H_3O_2^{1-}]}{[HC_2H_3O_2]} = K_a = .$	Acid dissociation constant
	$K_a = 1.8 \times 10^{-5} @ 25 °C$	
	$K_{a} = \frac{[H^{+}][C_{2}H_{3}O_{2}^{1}]}{[HC_{2}H_{3}O_{2}]}$	
	$1.8 \times 10^{-5} = \frac{[H^+][C_2H_3O_2^{-1}]}{[HC_2H_3O_2]}$]
		Ka
HCI –	\rightarrow H ⁺ + Cl ¹⁻	very large
HNO ₃	\longrightarrow H ⁺ + NO ₃ ¹⁻	very large

$$H_2SO_4 \longrightarrow H^+ + HSO_4^{1-}$$
 large

$$HC_2H_3O_2 \longleftarrow H^+ + C_2H_3O_2^{1-} 1.8 \times 10^{-5}$$

$$H_2S \longrightarrow H^+ + HS^{1-}$$
 9.5 x 10⁻⁸

Sample 1)

One gram of concentrated sulfuric acid (H_2SO_4) is diluted to a 1.0 dm³ volume with water. What is the molar concentration of the hydrogen ion in this solution? What is the pH?

Solution)

First determine the number of moles of H₂SO₄

 $\begin{array}{ll} x \mbox{ mol } H_2 SO_4 \ = 1 \ g \ H_2 SO_4 \ \ \frac{(1mol)}{(98g)} = \ 0.010 \ \mbox{mol } H_2 SO_4 \\ \end{array}$ $\begin{array}{ll} H_2 SO_4 \ \longrightarrow \ H^+ \ + \ HSO_4^{1-} & HSO_4^{1-} \ \longrightarrow \ H^+ \ + \ SO_4^{2-} \\ \end{array}$ $\begin{array}{ll} OVERALL: \\ H_2 SO_4 \ \longrightarrow \ 2 \ H^+ \ + \ SO_4^{2-} & \mbox{in dilute solutions...occurs } \sim 100\% \\ 0.010 \ \ M & 0.020 \ \ M \end{array}$

 $pH = -\log [H^+]$ substitute into equation $pH = -\log [0.020 M]$

pH = 1.69

A volume of 5.71 cm³ of pure acetic acid, $HC_2H_3O_2$, is diluted with water at 25 °C to form a solution with a volume of 1.0 dm³. What is the molar concentration of the hydrogen ion, H⁺, in this solution? (The density of pure acetic acid is 1.05 g/cm³.)

Step 1) Find the mass of the acid

Mass of acid = density of acid x volume of acid
=
$$1.05 \text{ g/cm}^3 \text{ x } 5.71 \text{ cm}^3$$

= 6.00 g

Step 2) Find the number of moles of acid. (From the formula of acetic acid, you can calculate that the molar mass of acetic acid is 60 g / mol).

x mol acetic acid = 6.00 g acetic acid $\frac{(1mol)}{(60g)}$ = 0.10 mol acetic acid (in 1 L)

Molarity: M = mol / L Substitute into equation M = 0.10 mol / 1 L

M = 0.1 molar

Step 3) Find the $[H^+]$

 $K_{a} = \frac{[H^{+}][C_{2}H_{3}O_{2}^{-1}]}{[HC_{2}H_{3}O_{2}]} \text{ Substitute into equation: } 1.8 \times 10^{-5} = \frac{[x][x]}{[H_{2}C_{2}H_{3}O_{2}]}$ $1.8 \times 10^{-5} = \frac{x^{2}}{0.10}$ $x^{2} = 1.8 \times 10^{-6}$ $x = 1.3 \times 10^{-3} \text{ molar}$

H⁺ Concentrations

Moles of Acid used to form 1 L of solution	H⁺	рН	
0.010 mol H₂SO₄	0.0200	1.7	Strong acid
0.100 mol HC ₂ H ₃ O ₂	0.0013	2.9	Weak acid

Note: although the sulfuric acid is 10x less concentrated than the acetic acid...it produces > 10x more H⁺

 $pH = -\log[H^+]$

Practice Problems:

- 1a) What is the molar hydrogen ion concentration in a 2.00 dm³ solution of hydrogen chloride in which 3.65 g of HCl is dissolved?
- 1b) pH
- 2a) What is the molar concentration of hydrogen ions in a solution containing 3.20 g of HNO_3 in 250 cm³ of solution?
- 2b) pH
- 3a) An acetic acid solution is 0.25 M. What is its molar concentration of hydrogen ions?
- 3b) pH
- 4) A solution of acetic acid contains 12.0 g of $HC_2H_3O_2$ in 500 cm³ of solution. What is the molar concentration of hydrogen ions?

ANSWERS:

1a) 0.0500 M2a) 0.203 M1b) pH = 1.32b) pH = 0.73a) $2.1 \times 10^{-3} \text{ M}$ 3b) pH = 2.74) $2.7 \times 10^{-3} \text{ M}$