Chemical Particles

Name: _____

AP Chemistry Lecture Outline

Historical Development of the Atomic Model

Greeks (~400 B.C.E.)

- -- Democritus, Leucippus, and others
 - Matter is discontinuous (i.e., "grainy").

Greek model of atom

-- Plato and Aristotle disagreed, saying that matter was continuous.

Hints at the Scientific Atom

- -- Antoine Lavoisier: law of conservation of mass
- -- Joseph Proust (1799):

law of definite proportions: every compound has a fixed proportion by mass

- e.g., water..... chromium(II) oxide......
- -- John Dalton (1803):

law of multiple proportions: When two different compounds have same two elements,

equal mass of one element results in integer multiple of mass of other.

e.g., water..... chromium(II) oxide...... hydrogen peroxide.... chromium(VI) oxide......

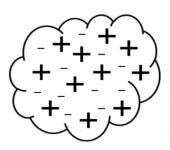
John Dalton's Atomic Theory (1808)

- 1. Elements are made of indivisible particles called atoms.
- 2. Atoms of the same element are exactly alike; in particular, they have the same mass.
- 3. Compounds are formed by the joining of atoms of two or more elements

in fixed, whole number ratios, e.g.,

Dalton's was the first atomic theory that had...

Dalton's model of atom

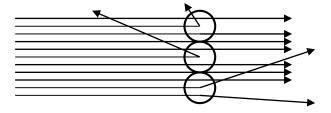

Video 206 (10:41)

Law of Electrostatic Attraction:

-- William Crookes (1870s): "Rays" causing a shadow were emitted from the cathode.

-- J.J. Thomson (1897) discovered that "cathode rays" are deflected by electric and magnetic fields. He found that "cathode rays" were particles (today, we call them electrons) having a charge-to-mass ratio of 1.76 x 10⁸ C/g.

Since atom was known to be electrically neutral, he proposed the plum pudding model.


-- Equal quantities of (+) and (–) charge distributed uniformly in atom. -- (+) is ~2000X more massive than (–).

-- Robert Millikan (1909) performed the "oil drop" experiment. Oil drops were given negative charges of varying magnitude. Charges on oil drops were found to be integer multiples of 1.60 x 10⁻¹⁹ C. He reasoned that this must be the charge on a single electron. He then found the electron's mass:

Video 209 (7:39)

Ernest Rutherford (1910): Gold Leaf Experiment
 A beam of α-particles (+) was directed at a gold leaf surrounded by a phosphorescent (ZnS) screen.

Most α -particles passed through, some angled slightly, and a tiny fraction bounced back.

Conclusions:

- 1.
- 2.
- 3.

-- James Chadwick discovered neutrons in 1932.

Purpose of $n^0 =$

electronic charge =

- -- In chemistry, charges are expressed as unitless multiples of this value, not in C. e.g.,
- -- atomic mass unit (amu): used to measure masses of atoms and subatomic particles

1 p⁺ = 1.0073 amu; 1 n⁰ = 1.0087 amu; 1 e⁻ = 0.0005486 amu

Conversion:

<u>Angstroms</u> (\mathring{A}) are often used to measure atomic dimensions.

Conversion:

atomic number:

-- the whole number on Periodic Table; determines the identity of an atom

mass number:

isotopes: different varieties of an element's atoms

--

- -- some are radioactive; others aren't
- -- A nucleus of a specific isotope is sometimes called a...

Complete Atomic Designation

... gives precise info about an atomic particle

atomic #

Protons	Neutrons	Electrons	Complete Atomic Designation
92	146	92	
11	12	10	
34	45	36	
			59 3+ Co 27
			37 – Cl 17
			55 7+ Mn

Average Atomic Mass (a.k.a., Atomic Mass or Atomic Weight)

This is the weighted average mass of all atoms of an element, measured in a.m.u. For an element with isotopes A, B, etc.:

EX. Lithium has two isotopes. Li-6 atoms have mass 6.015 amu; Li-7 atoms have mass 7.016 amu. Li-6 makes up 7.5% of all Li atoms. Find AAM of Li.

** Decimal number on Table refers to...

EX. Complete the table.

Isotope	Mass	% abundance
Si-28	27.98 amu	92.23%
Si-29	28.98 amu	4.67%
Si-30		

The Periodic Table

group: a vertical column; elements in a group share certain phys. and chem. properties

metals

nonmetals

metalloids

-- group 1 =

-- group 2 =

- -- group 16 =
- -- group 17 =
- -- group 18 =

Molecular compounds contain only...

<u>empirical formula</u>: shows relative #s of each type of atom in m'cule <u>molecular formula</u>: shows actual #s & types of atoms in m'cule <u>structural formula</u>: shows which atoms are bonded to which

Also... perspective drawing ball-and-stick model space-filling model

Nomenclature of Binary Molecular Compounds

Use Greek prefixes to indicate how many atoms of each element, but don't use "mono" on first element.

1 –	3 –	5 –	7 –	9 – 10 –	
2 –	4 –	6 —	8 –	10 —	

EX:	carbon dioxide	N2O5
	CO	carbon tetrachloride
	dinitrogen trioxide	NI ₃

Video	
224	
(8:35)	

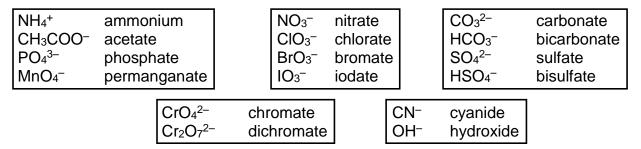
Ions and Ionic Compounds

ion: a charged particle (i.e., a charged atom or group of atoms)

<u>anion</u> : a	(-)	ion
------------------	-----	-----

-- formed when...

<u>cation</u>: a (+) ion


-- more e⁻ than p⁺

-- more p+ than e-

-- formed when...

polyatomic ion: a charged group of atoms

Memorize:

<u>Ionic compounds</u>, or <u>salts</u>, consist of oppositely-charged species bonded by electrostatic forces. You can describe salts as "metal-nonmetal," but "cation-anion" is better.

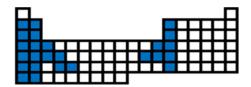
Nomenclature of Ionic Compounds

chemical formula: has neutral charge; shows types of atoms and how many of each

To write an ionic compound's formula, we need:

2	2. the charge on each ion	
Na+	and	∩2-

1. the two types of ions

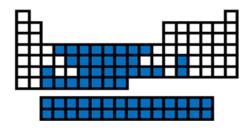

Na⁺	and	F⁻	Na⁺	and	O ^{2–}
Ba ²⁺	and	O ^{2–}	Ba ²⁺	and	F⁻

Parentheses are req'd only with <u>multiple</u> "bunches" of a particular polyatomic ion.

Ba ²⁺	and	SO4 ²⁻	Sn ⁴⁺	and	SO4 ²⁻
Mg ²⁺	and	NO ₂ -	Fe ³⁺	and	$Cr_{2}O_{7}^{2-}$
NH_4^+	and	CIO ₃ -	NH_4^+	and	N ^{3–}

Video 227 (7:22) Fixed-Charge Cations with Elemental Anions

For this class, the fixed-charge cations are groups 1, 2, 13, and Ag⁺, Zn^{2+} , Cd^{2+} , Sc^{3+} , Y^{3+} , Zr^{4+} , Hf^{4+} , Ta^{5+} .


A. To name, given the formula:		1. Use name of cation.	
		2. Use name of anion (it has the ending "ide").	
	NaF	Na ₂ O	
	BaO	BaF ₂	
	B. To write formula, given the name:	 Write symbols for the two types of ions. Balance charges to write formula. 	
	ailtean ac dfiala		

silver sulfide zinc phosphide calcium iodide

Video	
230	
(7:48)	

Variable-Charge Cations with Elemental Anions

For this class, the variable-charge cations are Pb²⁺/Pb⁴⁺, Sn²⁺/Sn⁴⁺, and all transition elements not listed above.

	ven the formula: <u>Stock System</u> f nomenclature	 Figure out charge on catio Write name of cation. Write Roman numerals in Write name of anion. CuBr 	
Fe ₂ O ₃		CuBr ₂	
	ormula, given the na	ame: 1. Write symbols for 2. Balance charges to wr	the two types of ions. ite formula.
cobalt (III) tin (IV) oxic			
tin (II) oxide	9		
Video 233 (8:25) Ins	ert name of ion whe	Containing Polyatomic lons ere it should go in the compoun (yanions: polyatomic ions conta	
"Most common"		<u>tyanions</u> . polyatomic ions conte	
BrO ₃ -	CIO ₃ -	PO4 ³⁻	CO ₃ 2-
IO ₃ -	NO ₃ -	SO4 ²⁻	
If an oxyanion diffe	rs from the above b	y the # of O atoms, the name c	hanges are as follows:
on	e more O =	perate	
"most commo	n" # of O =	ate	
one	e fewer O =	ite	
two	o fewer O =	hypoite	
Write formulas:		Write names:	
iron (III) nitrite		(NH4)2SO4	
ammonium pho	osphide	AgBrO₃	
ammonium chlo	orite	(NH4)3N	
zinc phosphate		U(CrO ₄) ₃	
lead (II) permai	nganate	Cr ₂ (SO ₃) ₃	

Acid Nomenclature

binary acids: acids ^w/H and one other element

Binary Acid Nomenclature 1. Write "hydro."

2. Write prefix of the other element, followed by "-ic acid."

HF HCI HBr hydroiodic acid hydrosulfuric acid

oxyacids: acids containing H, O, and one other element

Oxyacid Nomenclature

For "most common" forms of the oxyanions, write prefix of oxyanion, followed by "-ic acid."

HBrO₃ HClO₃ H₂CO₃ sulfuric acid phosphoric acid

If an oxyacid differs from the above by the # of O atoms, the name changes are:

one more O	=	peric acid
"most common" # of O	=	ic acid
one fewer O	=	ous acid
two fewer O	=	hypoous acid
HCIO ₄		
HCIO ₃		
HCIO ₂		
HCIO		
phosphorous acid		
hypobromous acid		
persulfuric acid		