Weak Acids and Bases

Name: _____

AP Chemistry Lecture Outline

Vide 1603 (10:2	o 3 5)	Weak Acids most acids are weak For a weak acid HX	HX(aq)	➡	H⁺(aq) ·	+ X⁻(a	aq)
		acid-dissociation constant	Ka =				
		large K _a : small K _a :					
		The % of a weak acid that is ioniz	ed is given l	by the equ	ation:		
	For org the "do	ganic acids (containing only C, H, an nated" H was connected to	nd O),	H C	он н		он — он О
EX.	A 0.02	0 M niacin solution has pH 3.26.	(a) What % (b) What is	of the aci K _a ?	id is ionize	d?	0 ║ ╱ ^C ∕0∕́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́

EX. If K_a for niacin is 1.6 x 10⁻⁵, find the pH of a 0.010 M niacin solution.

The conc. of a weak acid affects its % ionization.

As [acid] conc. 1, % ion. ____; as [acid] conc. 1, % ion. ____.

EX. Calculate the % of HF molecules ionized in – and the pH of – a 0.10 M HF solution. ($K_a = 6.8 \times 10^{-4}$)

EX. Calculate the % of HF molecules ionized in – and the pH of – a 0.010 M HF solution. $(K_a = 6.8 \ x \ 10^{-4})$

Polyprotic acids – like sulfurous acid, H₂SO₃ – have more than one ionizable H.

H₂SO₃(aq) \longrightarrow H⁺(aq) + HSO₃⁻(aq) (K_{a1} = 1.7 x 10⁻²) HSO₃⁻(aq) \longrightarrow H⁺(aq) + SO₃²⁻(aq) (K_{a2} = 6.4 x 10⁻⁸)

--

- -- Usually, K_{a2} is at least 1000X smaller than K_{a1}. In such cases, one can calculate [H⁺] and pH based only on K_{a1} (i.e., ignore K_{a2} and pretend you have a monoprotic acid).
- EX. Find the pH of a 0.0037 M carbonic acid solution. ($K_{a1} = 4.3 \times 10^{-7}$, $K_{a2} = 5.6 \times 10^{-11}$)

EX. What is the equilibrium concentration of ammonia in a solution of pH 9.35? Ammonia's

 $K_b = 1.8 \times 10^{-5}$.

The Ka / Kb Relationship for Conjugates

(1) NH_3 (2) NH_4^+ $K_a = K_b =$ Then $K_a \times K_b =$

For an acid and its conj. base:

Because they are easily calculated from K_a values, reference tables are often "short" on K_b values.

Just like $pH = -log [H^+]$,

- EX. For hydrofluoric acid, $K_a = 6.8 \times 10^{-4}$.
 - a. Write the formula of the conjugate base.
 - b. Write the equation for which K_b applies.
 - c. Write the equation for which K_a applies.
 - d. Find pK_a , pK_b , and K_b .

lons related to weak acids or bases can themselves exhibit acidic or basic properties.

One such ion is	which is related to, which is a 'weak'.	The ion would tend to H ⁺	and would thus exhibit properties.
CO3 ²⁻			
HCO₃⁻			
CIO-			
CIO2-			
NH4 ⁺			
CH₃COO⁻			

** NOTE: The ions we are dealing with here MUST be related to weaks, NOT strongs. Thus, ions such as Cl⁻ or NO₃⁻ or K⁺ or Sr²⁺ do NOT exhibit acidic or basic properties.

Because weak-related ions transfer H⁺s (as mentioned above, strong-related ions DO NOT), solutions of salts containing 'weak' ions can be acidic or basic.

For example, consider adding a spoonful of the salt sodium hypochlorite to water. The salt immediately does this...

The strong-related ion has no effect on H⁺ transfer, but the weak-related ion DOES, in this way...

We expect a solution of sodium hypochlorite to have a pH...

EX. What mass of solid potassium fluoride is required to make 5.0 L of a pH 8.35 solution?

Video 1633 (4:02) EX. Would we predict an NH₄CN soln to be acidic or basic?

What related info is found in the ref. tables?

But we have _____, not _____, and _____ would _____ a proton, so we need its ____.

And we have _____, not ____, and _____ would _____ a proton, so we need its ____.

Video	Anio
1636	
(5:34)	E
	E

Anions that still have ionizable protons (e.g., HSO₃⁻) are <u>amphoteric</u>.

Equation for K_a : Equation for K_b :

EX. Does KHSO₃ form an acidic or a basic solution in water?

From a reference table, we find... (a)
$$H_2SO_3 \longrightarrow H^+ + HSO_3^-$$

(b) $HSO_3^- \longrightarrow H^+ + SO_3^{2-}$

Video 1639 (7:13)	<u>General Factors Affecting</u> 1. To transfer H ⁺ , acid must h ionic hydrides o C–H bonds dor As polarity increases, acid	<u>g Acid Strength</u> have the polarity don't n't d strength <i>genera</i>	<i>lly</i> increases. BL	JT		
	2if H–X bond is too strong		(e.g.,)		
	3. Stable (i.e., weak) conjuga	te bases (e.g.,) in	dicate a		
For binary	v acids:			_		
(1) ln	a group, bond strength is the detern	nining factor.		Ν	0	F
A	s we go down a group	H_2S		inc P	S	СІ
charge separation,				oinary	Se	Br
	and acid strength	H ₂ Se		scid s	rength	Ι
(2) In	a period, bond polarity governs.				~1	
А	s we go L to R across a period		H ₂ O	Н	F	
bond polarity and acid strength						

o<u>xyacids</u>:

Consider H_2SO_4 (an acid) and $Ca(OH)_2$ (a base).

Ο -Ś–O–H H-O-| 0

The ΔEN between S and O is

and H. This means that...

_____ than that between O

H-O-Ca-O-H

The ∆EN between Ca and O is ______ than that between O and H. This means that...

When comparing related oxyacids, remember this		Anything that draws e ⁻ density AWAY from the "donate-able" H makes for a stronger acid.			
Comparison #1:		increases with increasing electronegativity of the central atom.			
e.g.,	HCIO				
	HBrO	H ₂ SeO ₃			
	HIO	H_2SO_3			
Related-Oxyac	cids	For oxyacids with the same central atom, acid strength increases			
Comparison #2:		as the # of oxygens attached to the central atom increases.			
e.g.,	HBrO	HIO ₃			
	HBrO ₂	HIO ₂			
Related-Oxyac	tids This	comparison deals with carboxylic acids, which			
<u>Companson (</u>	<u>+3</u> . CC	ntain the			
	these a	re the largest category of organic acids			
	acid str	ength increases from adding add'I high-EN atoms			
	e.g.,	CH₃COOH			
		CHF2COOH			
		CF ₃ COOH			

Lewis Acids and Lewis Bases

 $\stackrel{\mathsf{P}}{\stackrel{\mathsf{N}}{\underset{\mathsf{H}}{\overset{\mathsf{P}}{\underset{\mathsf{H}}{\underset{\mathsf{H}}{\overset{\mathsf{P}}{\underset{\mathsf{H}}{\overset{\mathsf{P}}{\underset{\mathsf{H}}{\underset{\mathsf{H}}{\overset{\mathsf{P}}{\underset{\mathsf{H}}{\underset{\mathsf{H}}{\overset{\mathsf{P}}{\underset{\mathsf{H}}{\underset{\mathsf{H}}{\overset{\mathsf{P}}{\underset{\mathsf{H}}{\underset{\mathsf{H}}{\overset{\mathsf{P}}{\underset{\mathsf{H}}{\underset{\mathsf{H}}{\overset{\mathsf{P}}{\underset{\mathsf{H}}{\underset{\mathsf{H}}{\overset{\mathsf{P}}{\underset{\mathsf{H}}{\underset{\mathsf{H}}{\overset{\mathsf{P}}{\underset{\mathsf{H}}{\underset{\mathsf{H}}{\overset{\mathsf{P}}{\underset{\mathsf{H}}{\underset{\mathsf{H}}{\overset{\mathsf{P}}{\underset{\mathsf{H}}{\underset{\mathsf{H}}{\atopH}}{\overset{\mathsf{P}}{\underset{\mathsf{H}}{\underset{\mathsf{H}}{\overset{\mathsf{P}}{\underset{\mathsf{H}}{\underset{\mathsf{H}}{\underset{\mathsf{H}}{\underset{\mathsf{H}}{\underset{\mathsf{H}}{\underset{\mathsf{H}}{\atopH}}{\underset{\mathsf{H}}{\overset{\mathsf{P}}{\underset{\mathsf{H}}{\underset{\mathsf{H}}{\atopH}}{\underset{\mathsf{H}}{\underset{\mathsf{H}}{\atopH}}{\underset{\mathsf{H}}{\underset{\mathsf{H}}{\atopH}}{\underset{\mathsf{H}}{\atopH}}{\underset{\mathsf{H}}{\atopH}}{\underset{\mathsf{H}}{\atopH}}{\underset{\mathsf{H}}{{H}}{\atopH}}}}}}}}}}}}}} } }$ H⁺

The Lewis definitions greatly broaden the range of acids because many species other than H-containing ones can accept an e⁻ pair.

Another example:

The simple term "acid" suggests that we are referring to an Arrhenius or a Bronsted-Lowry acid, i.e., an H-containing substance in an aqueous solution. If you are referring to a Lewis acid, then use the term "Lewis acid."

Substances with an incomplete octet (e.g., BF₃) or ones having vacant orbitals (e.g., Fe³⁺) can function as Lewis acids.

 -- The (+) charge attracts (i.e., accepts) the lone pairs of e⁻ on the O of a water molecule. This process is <u>hydration</u>: the "glomming" of H₂O m'cules onto metal ions.

H-Q: **Fe**³⁺ ,O-H

Cation size and cation charge determine the extent to which the pH is affected.

--

- -- short distance
- -- strong interaction

- -- larger distance
- -- weaker interaction

--